visibility Similar

STS054-71-044 - STS-054 - During STS-54 IUS/TDRS is released from cradle/tilt table above OV-105's PLB

S126E020233 - STS-126 - Earth Observations taken by STS-126 Crewmember

S126E020237 - STS-126 - Earth Observations taken by STS-126 Crewmember

Land Sat satellite at the Asteroid Grand Challenge anniversary event 2015

S126E019813 - STS-126 - Earth Observations taken by STS-126 Crewmember

The Mars Odyssey spacecraft nears its destination on the gantry at Launch Pad 17-A, Cape Canaveral Air Force Station, where it will be mated with the Delta II rocket. The spacecraft will map the Martian surface in search of geological features that could indicate the presence of water, now or in the past, and may contribute significantly toward understanding what will be necessary for a more sophisticated exploration of Mars. Launch is scheduled for 11:02 a.m. EDT April 7 KSC01pp0634

S126E019831 - STS-126 - Earth Observations taken by STS-126 Crewmember

CAPE CANAVERAL, Fla. – Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the Orion crew and service module stack for Exploration Flight Test-1 was lifted by crane out of the test cell and is being lowered onto a mating device. A protective covering surrounds the crew module. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV Heavy rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Ben Smegelsky KSC-2014-3772

STS066-102-023 - STS-066 - Earth observations during STS-66.

code Related

VANDENBERG AFB, California – Technicians and engineers place a transportation canister around NASA's SMAP spacecraft so it can be taken from the Astrotech processing facility to Space Launch Complex-2 for placement atop a Delta II rocket for launch. For more, go to www.nasa.gov/smap Photo credit: USAF/John Davila KSC-2015-1135

VANDENBERG AFB, California – Technicians and engineers place a transportation canister around NASA's SMAP spacecraft so it can be taken from the Astrotech processing facility to Space Launch Complex-2 for placement atop a Delta II rocket for launch. For more, go to www.nasa.gov/smap Photo credit: USAF/John Davila KSC-2015-1133

VANDENBERG AFB, California – Technicians and engineers place a transportation canister around NASA's SMAP spacecraft so it can be taken from the Astrotech processing facility to Space Launch Complex-2 for placement atop a Delta II rocket for launch. For more, go to www.nasa.gov/smap Photo credit: USAF/John Davila KSC-2015-1142

VANDENBERG AFB, California – Technicians and engineers place a transportation canister around NASA's SMAP spacecraft so it can be taken from the Astrotech processing facility to Space Launch Complex-2 for placement atop a Delta II rocket for launch. For more, go to www.nasa.gov/smap Photo credit: USAF/John Davila KSC-2015-1143

VANDENBERG AFB, California – Technicians and engineers place a transportation canister around NASA's SMAP spacecraft so it can be taken from the Astrotech processing facility to Space Launch Complex-2 for placement atop a Delta II rocket for launch. For more, go to www.nasa.gov/smap Photo credit: USAF/John Davila KSC-2015-1144

VANDENBERG AFB, California – Technicians and engineers place a transportation canister around NASA's SMAP spacecraft so it can be taken from the Astrotech processing facility to Space Launch Complex-2 for placement atop a Delta II rocket for launch. For more, go to www.nasa.gov/smap Photo credit: USAF/John Davila KSC-2015-1136

VANDENBERG AFB, California – Technicians and engineers place a transportation canister around NASA's SMAP spacecraft so it can be taken from the Astrotech processing facility to Space Launch Complex-2 for placement atop a Delta II rocket for launch. For more, go to www.nasa.gov/smap Photo credit: USAF/John Davila KSC-2015-1138

VANDENBERG AFB, California – Technicians and engineers place a transportation canister around NASA's SMAP spacecraft so it can be taken from the Astrotech processing facility to Space Launch Complex-2 for placement atop a Delta II rocket for launch. For more, go to www.nasa.gov/smap Photo credit: USAF/John Davila KSC-2015-1145

VANDENBERG AFB, California – Technicians and engineers place a transportation canister around NASA's SMAP spacecraft so it can be taken from the Astrotech processing facility to Space Launch Complex-2 for placement atop a Delta II rocket for launch. For more, go to www.nasa.gov/smap Photo credit: USAF/John Davila KSC-2015-1139

VANDENBERG AFB, California – Technicians and engineers place a transportation canister around NASA's SMAP spacecraft so it can be taken from the Astrotech processing facility to Space Launch Complex-2 for placement atop a Delta II rocket for launch. For more, go to www.nasa.gov/smap Photo credit: USAF/John Davila KSC-2015-1140

description

Summary

VANDENBERG AFB, California – Technicians and engineers place a transportation canister around NASA's SMAP spacecraft so it can be taken from the Astrotech processing facility to Space Launch Complex-2 for placement atop a Delta II rocket for launch. For more, go to www.nasa.gov/smap Photo credit: USAF/John Davila

Nothing Found.

label_outline

Tags

vafb slc 2 kennedy space center vandenberg afb vandenberg afb california technicians california technicians engineers engineers place transportation canister transportation canister smap spacecraft smap spacecraft astrotech space launch complex space launch complex placement delta rocket delta ii rocket usaf john davila high resolution nasa
date_range

Date

09/01/2015
place

Location

Vandenberg AFB, CA
create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore California Technicians, Engineers Place, Davila

Inside the Vertical Processing Facility, the Chandra X-ray Observatory is lifted by an overhead crane in order to transfer it into the payload canister transporter and out to Launch Pad 39B. Chandra is scheduled to launch no earlier than July 20 at 12:36 a.m. EDT aboard Space Shuttle Columbia, on mission STS-93. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe KSC-99pp0704

A Delta II rocket launches from Space Launch Complex Two at Vandenberg AFB, California, in the early morning hours carrying five Iridium satellites into polar orbit on the 11th of February 2002

A United Launch Alliance Atlas V rocket carrying a

U.S. Army STAFF SGT. Paul Vanoudeheusden a volunteer, pushes STAFF SGT. Jorge Davila while military working dog Kibo attack, during a K-9 demonstration in Forward Operating Base Remagen, Tikrit on April 27, 2006. Davila and Kibo are stationed in Yokota AB Japan and attached to the 3-320th Field Artillery Regiment, 101st Division. The 101st Airborne Division is currently deployed in the Tikrit area and Northern Iraq on support of Operation Iraqi Freedom. (U.S. Army photo by SPC. Teddy Wade) (Released)

The U.S. Army Funeral Detail, 65th Readiness Reserve Component, places the flag draped casket of SPEC. Melinda Davila fat the burial site on Feb. 14, 2007, at the Humacao Cemetery, Puerto Rico. (U.S. Army photo by Leo Martinez) (Released)

Col. J. Christopher Moss, 30th Space Wing commander,

VANDENBERG AIR FORCE BASE, Calif. -- In Bldg. 1610 at Vandenberg Air Force Base in California, the NOAA-N Prime spacecraft is waiting for a transportation canister to be placed around it. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite is scheduled to launch Feb. 4 aboard a Delta II rocket from Vandenberg Air Force Base. Photo credit: NASA/ Daniel Liberotti, VAFB KSC-2009-1452

VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron KSC-2015-1090

VANDENBERG AIR FORCE BASE, Calif. – Workers prepare to lift the fairing for NASA's Soil Moisture Active Passive mission, or SMAP, from a transportation trailer in the Building 836 high bay on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin KSC-2014-2837

VANDENBERG AIR FORCE BASE, Calif. – A United Launch Alliance Delta II rocket launches with the Orbiting Carbon Observatory-2, or OCO-2, satellite onboard from Space Launch Complex 2 at Vandenberg Air Force Base in California on Wednesday, July 2, 2014. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: NASA/Bill Ingalls KSC-2014-3110

VANDENBERG AIR FORCE BASE, Calif. – Representatives of news and social media outlets are given the opportunity to ask questions of NASA and aerospace contractor management during a post-launch news conference at Vandenberg Air Force Base in California following the successful launch of NASA's Orbiting Carbon Observatory-2, or OCO-2. Liftoff of OCO-2 from Space Launch Complex 2 aboard a United Launch Alliance Delta II rocket was on schedule at 5:56 a.m. EDT on July 2 following the repair of the pad's water suppression system, which failed on the first launch attempt July 1. OCO-2 is NASA’s first mission dedicated to studying atmospheric carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 will provide a new tool for understanding the human and natural sources of carbon dioxide emissions and the natural "sinks" that absorb carbon dioxide and help control its buildup. The observatory will measure the global geographic distribution of these sources and sinks and study their changes over time. To learn more about OCO-2, visit http://www.nasa.gov/oco2. Photo credit: NASA/Kim Shiflett KSC-2014-3119

VANDENBERG AIR FORCE BASE, Calif. – Workers inspect NASA's Soil Moisture Active Passive, or SMAP, spacecraft after its protective covering is removed in the Astrotech payload processing facility on Vandenberg Air Force Base in California during a post-shipment inspection. The covering protected the spacecraft from static-charge buildup and contamination while it was in transit from NASA's Jet Propulsion Laboratory in Pasadena, California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Robert Rasmison KSC-2014-4269

Topics

vafb slc 2 kennedy space center vandenberg afb vandenberg afb california technicians california technicians engineers engineers place transportation canister transportation canister smap spacecraft smap spacecraft astrotech space launch complex space launch complex placement delta rocket delta ii rocket usaf john davila high resolution nasa