visibility Similar

CAPE CANAVERAL, Fla. -- At the Vertical Integration Facility at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida, a trailer carrying a solid rocket motor (SRM) awaits unloading. The SRM will be mated to a United Launch Alliance Atlas V rocket being prepared to launch NASA's Mars Science Laboratory (MSL) mission. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Dimitri Gerondidakis KSC-2011-6935

Expedition 11 Preflight. NASA public domain image colelction.

CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station's Launch Complex 17-B in Florida, the first stage of a Delta II rocket is prepared to lift it into the mobile service tower for processing. The rocket is the launch vehicle for the STSS Demonstrators Program . STSS Demonstrators Program is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Jack Pfaller KSC-2009-2663

OCO-2 Booster on Stand. NASA public domain image. Kennedy space center.

VANDENBERG AIR FORCE BASE, Calif. – Workers monitor the solid rocket motor, or SRM, for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, as it is lifted into a vertical position beside the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to attach the Delta II rocket's three SRMs, known as graphite epoxy motors, to the rocket's first stage. OCO-2 is scheduled to launch into a polar Earth orbit aboard a United Launch Alliance Delta II 7320-10C rocket in July. Once in orbit, OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin KSC-2014-2133

VANDENBERG AIR FORCE BASE, Calif. -- The payload fairing that will protect NASA's National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) satellite as it launches aboard a United Launch Alliance Delta II is lifted to Level 5 of Space Launch Complex-2 at Vandenberg Air Force Base in California. NPP will be positioned 512 miles above the Earth's surface and will orbit about 16 times each day to observe nearly the entire globe. The NPP mission for NASA and the National Oceanic and Atmospheric Administration (NOAA) is to measure Earth's atmospheric and sea surface temperatures, humidity sounding, land and ocean biological activity, and cloud and aerosol properties. For more information, visit www.nasa.gov/NPP. Photo credit: NASA/VAFB, Roy Allison KSC-2011-6125

Expedition 65 Soyuz Rollout (NHQ202104060004)

VANDENBERG AIR FORCE BASE, Calif. – A half section of the 10-foot-diameter fairing for NASA's Soil Moisture Active Passive mission, or SMAP, is hoisted up the side of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California, past the Delta II first stage. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for no earlier than November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin KSC-2014-3463

Expedition 28 Soyuz Rollout (201106050024HQ)

code Related

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, keep watch as a solid rocket booster is lifted in between two other SRBs suspended from the gantry. They will be mated with a Delta 7925 rocket for launch April 7, 2001. The rocket will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0419

On Launch Pad 17-A, Cape Canaveral Air Force Station, a Delta 7925 rocket (left) waits for three additional solid rocket boosters (right) to arrive. Scheduled to launch April 7, 2001, the rocket will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0422

On Launch Pad 17-A, Cape Canaveral Air Force Station, workers maneuver the first stage of a Boeing Delta rocket into a vertical position . The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0461

Workers at Launch Pad 17-A, Cape Canaveral Air Force Station, attach cables from a crane to one piece of the fairing that will cover the Mars Odyssey Orbiter during launch on a Delta rocket. The 2001 Mars Odyssey Orbiter is scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0466

The first stage of a Boeing Delta rocket arrives on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0457

Two solid rocket boosters, in the background, are lifted up the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station, for stacking with a Delta 7925 rocket. The rocket, scheduled to launch April 7, 2001, will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0417

A Delta 7925 rocket on Launch Pad 17-A, Cape Canaveral Air Force Station, is being erected for launch April 7, 2001. The rocket will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0416

The first stage of a Boeing Delta rocket is lifted into place in the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0460

The first stage of a Boeing Delta rocket is lifted vertically up the gantry on Launch Pad 17-A, Cape Canaveral Air Force Station. The rocket will carry the 2001 Mars Odyssey Orbiter, scheduled for launch April 7, 2001. Mars Odyssey contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0464

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, watch as a third solid rocket booster is lifted up the gantry between two others. They will be mated with a Delta 7925 rocket for launch April 7, 2001. The rocket will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC01pp0421

description

Summary

Workers on Launch Pad 17-A, Cape Canaveral Air Force Station, watch as a third solid rocket booster is lifted up the gantry between two others. They will be mated with a Delta 7925 rocket for launch April 7, 2001. The rocket will carry the 2001 Mars Odyssey Orbiter, containing three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers

Nothing Found.

label_outline

Tags

kennedy space center workers launch pad station cape canaveral air force station rocket booster rocket booster gantry others two others delta mars odyssey orbiter mars odyssey orbiter science instruments three science instruments themis gamma ray spectrometer gamma ray spectrometer grs radiation environment experiment mars radiation environment experiment marie map mineralogy morphology martian surface martian surface camera composition abundance hydrogen near space radiation environment risk explorers explorers ksc air force cape canaveral maps geology rocket launch space launch complex nasa
date_range

Date

28/02/2001
place

Location

Cape Canaveral, FL
create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Explorers Ksc, Two Others, Near Space Radiation Environment

Servant offering bowl to woman; two others, Katsushika Hokusai

One of the youngest boys I found working in the Naomi Mill apparently 10 yrs old. There were two others about as young. Location: Randleman, North Carolina

At launch pad 36-A, Cape Canaveral Air Force Station, workers check over the second stage of an Atlas II/Centaur rocket before it is lifted up the gantry (behind it) for mating with the first stage. Atlas II is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing KSC00pp0424

Delta II First stage lift for THEMIS payload at complex 17B

[General Railway Signal Co. Retarder, Texas & Pacific Railway Company]

KENNEDY SPACE CENTER, FLA. -- A weather balloon takes flight from the Cape Canaveral Air Force Station weather station. The balloon is equipped with a radiosonde, an instrument that transmits measurements on atmospheric pressure, humidity, temperature and winds as it ascends. The data will be used to determine if conditions are acceptable for the launch of NASA's THEMIS mission. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Launch is planned from Pad 17-B in a window that extends from 6:01 to 6:19 p.m. EST. Photo credit: NASA/George Shelton KSC-07pd0425

Smoke clouds pour across the ground as the Boeing Delta II rocket carrying the 2001 Mars Odyssey spacecraft leaps into the clear blue sky. Liftoff occurred at 11:02 a.m. EDT. The launch sends the Mars Odyssey on an approximate 7-month journey to orbit the planet Mars. The spacecraft, built by Lockheed Martin Space Systems for the Jet Propulsion Laboratory, will map the Martian surface looking for geological features that could indicate the presence of water, now or in the past. Science gathered by three science instruments on board will be key to future missions to Mars, including orbital reconnaissance, lander and human missions KSC-01pp0744

In the Space Assembly and Encapsulation Facility 2, the Mars Odyssey Orbiter is suspended from an overhead crane that is moving it toward the third stage of a Delta rocket for installation. In front on the spacecraft can be seen a high gain antenna; at right is the folded solar array assembly. The Mars Odyssey is scheduled for launch at 11:02 a.m. EDT April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station. The spacecraft is designed to map the surface of Mars KSC01pp0608

At Launch Pad 36A, Cape Canaveral Air Station, a Centaur upper stage is lifted up the gantry for mating with the lower stage Lockheed Martin Atlas IIA rocket already in place. The Lockheed Martin-manufactured Centaur IIA is powered by two Pratt & Whitney turbopump-fed engines, producing a total thrust of 41,600 pounds. The rocket is scheduled to launch the NASA GOES-L satellite on May 15, at the opening of a launch window which extends from 2:23 to 4:41 a.m. EDT. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites KSC-99pp0426

KENNEDY SPACE CENTER, FLA. -- -- On Launch Complex 17-A, Cape Canaveral Air Force Station, the Comet Nucleus Tour (CONTOUR) spacecraft inches closer to the top of the gantry where it will be encapsulated and mated with the launch vehicle. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. Launch of CONTOUR aboard a Boeing Delta II rocket is scheduled for July 1, 2002 KSC-02pd1034

Delta II Second stage lift and mate

THEMIS payload encapsulation at complex 17B

Topics

kennedy space center workers launch pad station cape canaveral air force station rocket booster rocket booster gantry others two others delta mars odyssey orbiter mars odyssey orbiter science instruments three science instruments themis gamma ray spectrometer gamma ray spectrometer grs radiation environment experiment mars radiation environment experiment marie map mineralogy morphology martian surface martian surface camera composition abundance hydrogen near space radiation environment risk explorers explorers ksc air force cape canaveral maps geology rocket launch space launch complex nasa