visibility Similar

Robotic Arm of Rover 1. NASA public domain image colelction.

CAPE CANAVERAL, Fla. -- Ball Aerospace and Technology workers conduct a light test on the solar array panels of NASA's Kepler spacecraft. A NASA Discovery mission, Kepler is specifically designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-size and smaller planets in or near the habitable zone and determine how many of the billions of stars in our galaxy have such planets. Kepler will hunt for planets using a specialized one-meter diameter telescope called a photometer to measure the small changes in brightness caused by the transits. Results from this mission will allow us to place our solar system within the continuum of planetary systems in the Galaxy. After processing at Astrotech, Kepler will be carried to its launch pad at Cape Canaveral Air Force Station. NASA's planet-hunting Kepler mission is scheduled to launch no earlier than March 5 atop a United Launch Alliance Delta II rocket. Photo credit: NASA/Kim Shiflett KSC-2009-1126

In the Payload Hazardous Servicing Facility, workers work at removing the Stardust solar panels for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006 KSC-98pc1726

CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Express Logistics Carrier-2, or ELC-2, is positioned over a transportation canister in which it will be secured for its trip to Launch Pad 39A. Once at the pad, it will be installed in space shuttle Atlantis' payload bay. The carrier is part of the payload for Atlantis' STS-129 mission to the International Space Station. The STS-129 crew will deliver two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Launch is targeted for Nov. 16. For information on the STS-129 mission objectives and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jack Pfaller KSC-2009-5685

VANDENBERG AIR FORCE BASE, CALIF.- At Vandenberg Air Force Base, Calif., spacecraft functional testing is underway on the SciSat-1. The solar arrays are being attached and the communications systems are also being checked out. The SciSat-1 weighs approximately 330 pounds and after launch will be placed in a 400-mile-high polar orbit to investigate processes that control the distribution of ozone in the upper atmosphere. The data from the satellite will provide Canadian and international scientists with improved measurements relating to global ozone processes and help policymakers assess existing environmental policy and develop protective measures for improving the health of our atmosphere, preventing further ozone depletion. The mission is designed to last two years.

CAPE CANAVERAL, Fla. -- A canister, carrying the Alpha Magnetic Spectrometer-2 AMS and Express Logistics Carrier-3 for space shuttle Endeavour's STS-134 mission, enters the Canister Rotation Facility from the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. There, the canister that protects the space-bound payload will be rotated from a horizontal to vertical position so that it can be installed into Endeavour's payload bay. AMS is a particle physics detector, designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett KSC-2011-2320

KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, the GALEX satellite has been moved to a rotation stand. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket. KSC-03pd0476

KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility at KSC, installation is under way of the Mars Orbiter Camera (MOC) on the Mars Global Surveyor spacecraft. The MOC is one of a suite of six scientific instruments that will gather data about Martian topography, mineral distribution and weather during a two-year period. The Mars Global Surveyor is slated for launch aboard a Delta II expendable launch vehicle on Nov. 6, the beginning of a 20-day launch period.

EFT-1 Crew Module on Display at KSC Visitor Complex

code Related

Cape Canaveral, Fla. -- Technicians at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, put the instrument mast and science boom on NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, through a series of deployment tests. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin KSC-2011-5922

Cape Canaveral, Fla. -- Technicians, at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, use an overhead crane to move NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, to the high bay floor where the instrument mast and science boom will undergo deployment testing. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin KSC-2011-5912

Cape Canaveral, Fla. -- Technicians at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, put the instrument mast and science boom on NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, through a series of deployment tests. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin KSC-2011-5924

Cape Canaveral, Fla. -- At the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians remove the protective cover from NASA's Mars Science Laboratory (MSL) rover known as Curiosity, before processing and testing. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann KSC-2011-4945

Cape Canaveral, Fla. -- Technicians at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, put the instrument mast and science boom on NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, through a series of deployment tests. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin KSC-2011-5923

Cape Canaveral, Fla. -- Technicians, at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, prepare NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, for instrument mast and science boom deployment testing. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin KSC-2011-5921

Cape Canaveral, Fla. -- At the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, Dr. Charles Elachi, Director of Advanced Planning at NASA's Jet Propulsion Laboratory (right), is shown NASA's Mars Science Laboratory (MSL) rover known as Curiosity. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Jim Grossmann KSC-2011-5871

Cape Canaveral, Fla. -- Technicians at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, prepare to move NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, to the high bay floor where the instrument mast and science boom will undergo deployment testing. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin KSC-2011-5909

Cape Canaveral, Fla. -- Technicians, at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, use an overhead crane to move NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, to the high bay floor where the instrument mast and science boom will undergo deployment testing. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin KSC-2011-5915

Cape Canaveral, Fla. -- Technicians at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, put the instrument mast and science boom on NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, through a series of deployment tests. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin KSC-2011-5925

description

Summary

Cape Canaveral, Fla. -- Technicians at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, put the instrument mast and science boom on NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, through a series of deployment tests. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin

Nothing Found.

label_outline

Tags

elv mars science laboratory atlas v phsf kennedy space center cape canaveral technicians payload instrument mast instrument mast science boom science boom mars laboratory mars science laboratory msl rover curiosity deployment tests deployment tests launch atlas launch alliance atlas v configuration loft loft msl science instruments search evidence environments life ingredients laser release gasses spectrometer rover spectrometer earth station cape canaveral air force station florida nov mars aug frankie martin air force high resolution earth from space satellite nasa
date_range

Date

18/07/2011
place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Instrument Mast, Deployment Tests, Elv Mars Science Laboratory Atlas V Phsf

S94E0083 - STS-094 - STS-94 MSL (Spacelab) internal closeout photos

S94E0075 - STS-094 - STS-94 MSL (Spacelab) internal closeout photos

CAPE CANAVERAL, Fla. -- A crane positions the 106.5-foot-long first stage of the Atlas V rocket for NASA's Mars Science Laboratory (MSL) mission inside the Vertical Integration Facility at Space Launch Complex 41 on Cape Canaveral Air Force Station. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston KSC-2011-6840

Cape Canaveral, Fla. -- Technicians at the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, put the instrument mast and science boom on NASA's Mars Science Laboratory (MSL) rover, known as Curiosity, through a series of deployment tests. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch from Cape Canaveral Air Force Station in Florida Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Frankie Martin KSC-2011-5923

STS-94 Payload Commander Janice Voss prepares to enter the Space Shuttle Columbia at Launch Pad 39A in preparation for launch. She has flown on STS-83, STS-63 and STS-57. Voss holds a doctorate degree in aeronautics/astronautics from the Massachusetts Institute of Technology and has earned two NASA Space Flight Medals. As Payload Commander and a member of the Blue team, Voss will have overall responsibility for the operation of all of the MSL-1 experiments. During the experimentation phase of the mission, she be working primarily with three combustion experiments. She and six fellow crew members will lift off during a launch window that opens at 1:50 p.m. EDT, July 1. The launch window will open 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reach the space center KSC-97PC970

S94E0044 - STS-094 - STS-94 MSL (Spacelab) internal closeout photos

MSL - ASOC Control Room 2011-7960

TITUSVILLE, Fla. – Technicians work with a solar array with its associated science boom for the Radiation Belt Storm Probe B at the Astrotech facility in Titusville, Fla. NASA's RBSP mission will help us understand the sun's influence on Earth and near-Earth space by studying the Earth's radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kim Shiflett KSC-2012-3910

TITUSVILLE, Fla. – Technicians attach a solar array with its associated science boom to the Radiation Belt Storm Probe B at the Astrotech facility in Titusville, Fla. NASA's RBSP mission will help us understand the sun's influence on Earth and near-Earth space by studying the Earth's radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth's Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kim Shiflett KSC-2012-3917

TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians remove covers after a crane was attached to the Radiation Belt Storm Probes, or RBSP, spacecraft A prior to vertical stacking atop RBSP B. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann KSC-2012-4061

S94E0036 - STS-094 - STS-94 MSL (Spacelab) internal closeout photos

KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., the STEREO spacecraft "A" is ready to be moved to a tilt table. On the table, the observatory will be tilted down so that technicians can perform the final comprehensive performance test of the instruments, verifying the instrument is fully functional before flight. After a rotation, this configuration also allows deployment tests to be done on the solar arrays. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket on July 22. Photo credit: NASA/George Shelton KSC-06pd1154

Topics

elv mars science laboratory atlas v phsf kennedy space center cape canaveral technicians payload instrument mast instrument mast science boom science boom mars laboratory mars science laboratory msl rover curiosity deployment tests deployment tests launch atlas launch alliance atlas v configuration loft loft msl science instruments search evidence environments life ingredients laser release gasses spectrometer rover spectrometer earth station cape canaveral air force station florida nov mars aug frankie martin air force high resolution earth from space satellite nasa