visibility Similar

NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft / SOLAR PANEL INSTALL

TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians use a crane to position the Radiation Belt Storm Probes, or RBSP, spacecraft A for stacking atop RBSP B. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann KSC-2012-4070

CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., NASA's GOES-P meteorological satellite, covered in a protective bag, is positioned over a Ransome table on which it will be secured and rotated for further testing. GOES-P, the latest Geostationary Operational Environmental Satellite, was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. GOES-P is designed to watch for storm development and observed current weather conditions on Earth. Launch of GOES-P is targeted for no earlier than Feb. 25, 2010, from Launch Complex 37 aboard a United Launch Alliance Delta IV rocket. For information on GOES-P, visit http://goespoes.gsfc.nasa.gov/goes/spacecraft/n_p_spacecraft.html. Photo credit: NASA/Jack Pfaller KSC-2009-6889

VANDENBERG AIR FORCE BASE, Calif. -- A closeup of the OSTM/Jason-2 spacecraft after removal of the shipping container in the Astrotech processing facility at Vandenberg Air Force Base. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Mark Mackley KSC-08pd1299

KENNEDY SPACE CENTER, FLA. - Workers at Astrotech Space Operations’ hazardous processing facility remove a protective cover around the MESSENGER spacecraft. It was moved the site in preparation for loading the spacecraft’s complement of hypergolic propellants. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla., bound for Mercury. The spacecraft is expected to reach orbit around Mercury in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md. KSC-04pd1381

NASA GLORY SPACECRAFT AT ORBITAL SCIENCES CLEANROOM

CAPE CANAVERAL, Fla. – Personnel from NASA's Jet Propulsion Laboratory JPL in California check the instruments on NASA's International Space Station-RapidScat during testing of its rotating radar antenna in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida. From left are RapidScat project manager John Wirth and JPL flight technician Kieran McKay. Built at JPL, the radar scatterometer is the first scientific Earth-observing instrument designed to operate from the exterior of the space station. It will measure Earth's ocean surface wind speed and direction, providing data to be used in weather and marine forecasting. ISS-RapidScat will be delivered to the station on the SpaceX-4 commercial cargo resupply flight targeted for August 2014. For more information, visit http://www.jpl.nasa.gov/missions/iss-rapidscat. Photo credit: NASA/Daniel Casper KSC-2014-2974

CAPE CANAVERAL, Fla. – Technicians secure a work stand supporting NASA's Lunar Reconnaissance Orbiter, or LRO, in the high bay at the Astrotech processing facility in Titusville, Fla. The spacecraft was built by engineers at Goddard Space Flight Center, where it recently completed two months of tests in a thermal vacuum chamber. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. The polar regions of the moon are the main focus of the mission because continuous access to sunlight may be possible and water ice may exist in permanently shadowed areas of the poles. Accompanying LRO on its journey to the moon will be the Lunar Crater Observation and Sensing Satellite, or LCROSS, a mission that will impact the lunar surface in its search for water ice. Launch of LRO/LCROSS is targeted for April 24. Photo credit: NASA/Kim Shiflett KSC-2009-1632

Aquarius Artist Concept, JPL/NASA images

code Related

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers maneuver one of the THEMIS probes before installing bolt cutters that will separate each probe from the payload carrier. The probes will undergo weeks of testing and launch preparations. This includes a functional performance test to verify the state of health of each of the five probes and pressurization and leak checks of the reaction control systems. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. These lights are the visible manifestations of invisible energy releases, called geomagnetic substorms, in near-Earth space. THEMIS will not only seek to answer where and when substorms start, but will also provide clues as to how and why these space storms create havoc on satellites, terrestrial power grids, and communication systems. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller KSC-06pd2803

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers install bolt cutters on one of the THEMIS probes. The cutters will separate each probe from the payload carrier. The probes will undergo weeks of testing and launch preparations. This includes a functional performance test to verify the state of health of each of the five probes and pressurization and leak checks of the reaction control systems. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. These lights are the visible manifestations of invisible energy releases, called geomagnetic substorms, in near-Earth space. THEMIS will not only seek to answer where and when substorms start, but will also provide clues as to how and why these space storms create havoc on satellites, terrestrial power grids, and communication systems. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller KSC-06pd2805

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers install bolt cutters on one of the THEMIS probes. The cutters will separate each probe from the payload carrier. The probes will undergo weeks of testing and launch preparations. This includes a functional performance test to verify the state of health of each of the five probes and pressurization and leak checks of the reaction control systems. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. These lights are the visible manifestations of invisible energy releases, called geomagnetic substorms, in near-Earth space. THEMIS will not only seek to answer where and when substorms start, but will also provide clues as to how and why these space storms create havoc on satellites, terrestrial power grids, and communication systems. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller KSC-06pd2804

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers prepare one of the THEMIS probes for installation of bolt cutters that will separate each probe from the payload carrier. The probes will undergo weeks of testing and launch preparations. This includes a functional performance test to verify the state of health of each of the five probes and pressurization and leak checks of the reaction control systems. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. These lights are the visible manifestations of invisible energy releases, called geomagnetic substorms, in near-Earth space. THEMIS will not only seek to answer where and when substorms start, but will also provide clues as to how and why these space storms create havoc on satellites, terrestrial power grids, and communication systems. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller KSC-06pd2800

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., a worker installs bolt cutters on one of the THEMIS probes. The cutters will separate each probe from the payload carrier. The probes will undergo weeks of testing and launch preparations. This includes a functional performance test to verify the state of health of each of the five probes and pressurization and leak checks of the reaction control systems. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. These lights are the visible manifestations of invisible energy releases, called geomagnetic substorms, in near-Earth space. THEMIS will not only seek to answer where and when substorms start, but will also provide clues as to how and why these space storms create havoc on satellites, terrestrial power grids, and communication systems. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller KSC-06pd2801

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., the five probes of the THEMIS spacecraft remain under cover. The probes will undergo weeks of testing and launch preparations. This includes a functional performance test to verify the state of health of each of the five probes, installation of bolt cutters that will separate each probe from the payload carrier, and pressurization and leak checks of the reaction control systems. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. These lights are the visible manifestations of invisible energy releases, called geomagnetic substorms, in near-Earth space. THEMIS will not only seek to answer where and when substorms start, but will also provide clues as to how and why these space storms create havoc on satellites, terrestrial power grids, and communication systems. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller KSC-06pd2799

KENNEDY SPACE CENTER, FLA. -- One of the five THEMIS probes is being transported from Astrotech Space Operations in Titusville, Fla., to the hazardous processing facility. There the probes will be placed on a stand in preparation for fueling operations. Once fueling is complete, each probe will be weighed and individually mated to the payload carrier before pyrotechnics are installed. The fully integrated THEMIS payload is then ready for spin-balance testing and weighing. The final milestone is mating THEMIS to its upper stage booster. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. These lights are the visible manifestations of invisible energy releases, called geomagnetic substorms, in near-Earth space. THEMIS will not only seek to answer where and when substorms start, but will also provide clues as to how and why these space storms create havoc on satellites, terrestrial power grids, and communication systems. THEMIS will be transported to Pad 17-B at Cape Canaveral Air Force Station on February 1 for mating to the Delta II rocket. Launch is scheduled for Feb. 15. Photo credit: NASA/George Shelton KSC-06pd2817

KENNEDY SPACE CENTER, FLA. -- One of the five THEMIS probes arrives at the hazardous processing facility after leaving Astrotech Space Operations in Titusville, Fla. At the facility, the probes will be placed on a stand in preparation for fueling operations. Once fueling is complete, each probe will be weighed and individually mated to the payload carrier before pyrotechnics are installed. The fully integrated THEMIS payload is then ready for spin-balance testing and weighing. The final milestone is mating THEMIS to its upper stage booster. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. These lights are the visible manifestations of invisible energy releases, called geomagnetic substorms, in near-Earth space. THEMIS will not only seek to answer where and when substorms start, but will also provide clues as to how and why these space storms create havoc on satellites, terrestrial power grids, and communication systems. THEMIS will be transported to Pad 17-B at Cape Canaveral Air Force Station on February 1 for mating to the Delta II rocket. Launch is scheduled for Feb. 15. Photo credit: NASA/George Shelton KSC-06pd2818

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., technicians release the overhead crane from the shipping container placed around one of the five THEMIS probes for its move to the hazardous processing facility. There the probes will be placed on a stand in preparation for fueling operations. Once fueling is complete, each probe will be weighed and individually mated to the payload carrier before pyrotechnics are installed. The fully integrated THEMIS payload is then ready for spin-balance testing and weighing. The final milestone is mating THEMIS to its upper stage booster. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. These lights are the visible manifestations of invisible energy releases, called geomagnetic substorms, in near-Earth space. THEMIS will not only seek to answer where and when substorms start, but will also provide clues as to how and why these space storms create havoc on satellites, terrestrial power grids, and communication systems. THEMIS will be transported to Pad 17-B at Cape Canaveral Air Force Station on February 1 for mating to the Delta II rocket. Launch is scheduled for Feb. 15. Photo credit: NASA/George Shelton KSC-06pd2815

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers maneuver one of the THEMIS probes before installing bolt cutters that will separate each probe from the payload carrier. The probes will undergo weeks of testing and launch preparations. This includes a functional performance test to verify the state of health of each of the five probes and pressurization and leak checks of the reaction control systems. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. These lights are the visible manifestations of invisible energy releases, called geomagnetic substorms, in near-Earth space. THEMIS will not only seek to answer where and when substorms start, but will also provide clues as to how and why these space storms create havoc on satellites, terrestrial power grids, and communication systems. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller KSC-06pd2802

description

Summary

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers maneuver one of the THEMIS probes before installing bolt cutters that will separate each probe from the payload carrier. The probes will undergo weeks of testing and launch preparations. This includes a functional performance test to verify the state of health of each of the five probes and pressurization and leak checks of the reaction control systems. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. These lights are the visible manifestations of invisible energy releases, called geomagnetic substorms, in near-Earth space. THEMIS will not only seek to answer where and when substorms start, but will also provide clues as to how and why these space storms create havoc on satellites, terrestrial power grids, and communication systems. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

Nothing Found.

label_outline

Tags

kennedy space center astrotech astrotech space operations titusville workers workers maneuver one themis probes themis probes bolt cutters bolt cutters payload carrier payload carrier performance performance test state five probes pressurization checks leak checks reaction control reaction control systems satellites orbit rocket constellation mystery causes aurora borealis aurora borealis australis aurora australis skies earth lights manifestations energy releases energy releases geomagnetic substorms geomagnetic substorms near earth near earth space answer clues storms space storms havoc power grids power grids communication communication systems station cape canaveral air force station jack pfaller air force cape canaveral high resolution satellite spacecraft nasa
date_range

Date

13/12/2006
place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Five Probes, Bolt Cutters, Performance Test

STS063-25-015 - STS-063 - SPACEHAB and the IMAX camera in Discovery's payload bay

Manifestation 14 juillet 1935 Bastille

Flooding ^ Hurricane/Tropical Storm ^ Mudslide/Landslide - Pittsfield, Vt. , September 12, 2011 --A Pittsfield house has been literally eaten away from it's foundation after tropical storm Irene deposited 11 or more inches of rain to rivers and streams--wreaking havoc on homes across Vermont. FEMA is providing assistance to those who were affected by Hurricane Irene. Photo by Angela Drexel

Production. Airplane maufacture, general. A noontime rest for a full- fledged assembly worker at the Long Beach, California, plant of Douglas Aircraft Company. Nacelle parts for a heavy bomber form the background. Most important are the many types of aircraft made at this plant are the B-17F ("Flying Fortress") heavy bomber, the A-20 ("Havoc") assault bomber and the C-47 heavy transport plane for the carrying of troops and cargo

L'étendard des Bigotphones Taxi dans la manifestation des grévistes à Paris en 1934 - Détail d'une photo de l'agence Meurisse

Manifestation 1907 Pierre Dantoine

Production. Airplane maufacture, general. American mothers and sisters, like these women at the Long Beach, California, plant of Douglas Aircraft Company, give important help in producing planes for their men at the front. Most important of the many types of aircraft made at the plant are the B-17F ("Flying Fortress") heavy bomber, the A-20 ("Havoc") assault bomber and the C-47 heavy transport plane for the carrying of troops and cargo

s133E007796 - STS-133 - Node-1-to-PMM (Permanent Multipurpose Module) vestibule pressurization and leak check

Production. Airplane maufacture, general. Stockrooms are as busy as the assembly lines at the Long Beach, California, plant of Douglas Aircraft Company. Most important of the many types of aircraft made at this plant are the B-17F ("Flying Fortress") heavy bomber, the A-20 ("Havoc") assault bomber and the C-47 heavy transport plane for the carrying of troops and cargo

LAUNCH OF THEMIS (Time History of Events and Macroscale Interactions during Substorms) SPACECRAFT

LAUNCH OF THEMIS (Time History of Events and Macroscale Interactions during Substorms) SPACECRAFT

La manifestation du 20 janvier / M. Lépine ayant été entouré par les manifestants lors d'une échauffourée ...

Topics

kennedy space center astrotech astrotech space operations titusville workers workers maneuver one themis probes themis probes bolt cutters bolt cutters payload carrier payload carrier performance performance test state five probes pressurization checks leak checks reaction control reaction control systems satellites orbit rocket constellation mystery causes aurora borealis aurora borealis australis aurora australis skies earth lights manifestations energy releases energy releases geomagnetic substorms geomagnetic substorms near earth near earth space answer clues storms space storms havoc power grids power grids communication communication systems station cape canaveral air force station jack pfaller air force cape canaveral high resolution satellite spacecraft nasa