visibility Similar

ISS during arrival of STS-127 Space Shuttle Endeavour

STS063-21-023 - STS-063 - MS Harris and MS Foale handling SPARTAN-204 on the payload bay

CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians have begun the process to stow the power-generating solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch on Nov 18, 2013 from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann KSC-2013-3673

STS097-374-026 - STS-097 - P6 Truss, Solar Array, SABB & EETCS taken during the first EVA of STS-97

VANDENBERG AIR FORCE BASE, Calif. -- Inside the Astrotech payload processing facility at Vandenberg Air Force Base in California, NASA's Glory spacecraft will be removed from its protective covering. Next, the spacecraft will be encapsulated in its protective payload fairing before it is transported to Space Launch Complex 576-E and joined with the Taurus XL rocket's third stage. Once Glory reaches orbit, it will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Launch is scheduled for 5:09 a.m. EST Feb. 23. For information, visit www.nasa.gov/glory. Photo credit: NASA/Ed Henry, VAFB KSC-2011-1084

The Ares I-X Pathfinder 1 (PF1) segment move from Building 50 to Building 333

Juno Gets Fueled - NASA Jupiter images

NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft

STS067-375-037 - STS-067 - Very dark views of the payload bay during night pass

code Related

KENNEDY SPACE CENTER, Fla. -- At Astrotech, Titusville, Fla., workers look at the fairing being installed around the newest Geostationary Operational Environmental Satellite-M (GOES-M). The satellite is the last in the current series of advanced geostationary weather satellites in service. GOES-M has a new instrument not on earlier spacecraft, a Solar X-ray Imager that can be used in forecasting space weather, the effects of solar storms that create electromagnetic disturbances on earth that affect other satellites, communications and power grids. GOES is scheduled to launch from Launch Complex 36-A, Cape Canaveral Air Force Station, on an Atlas II rocket July 15 KSC-01pp1244

KENNEDY SPACE CENTER, Fla. -- At Complex 36-A, Cape Canaveral Air Force Station, the second stage of the Geostationary Operational Environmental Satellite-M (GOES-M) Atlas II rocket nears the top of the gantry. It will be mated with the first stage. The last in the current series of advanced geostationary weather satellites in service, GOES-M has a new instrument not on earlier spacecraft, a Solar X-ray Imager that can be used in forecasting space weather, the effects of solar storms that create electromagnetic disturbances on earth that affect other satellites, communications and power grids. GOES-M is scheduled to launch from Cape Canaveral Air Force Station July 15 KSC-01pp1066

KENNEDY SPACE CENTER, Fla. -- At Complex 36-A, Cape Canaveral Air Force Station, the second stage of the Geostationary Operational Environmental Satellite-M (GOES-M) Atlas II rocket is lifted up the gantry for mating with the first stage. The last in the current series of advanced geostationary weather satellites in service, GOES-M has a new instrument not on earlier spacecraft, a Solar X-ray Imager that can be used in forecasting space weather, the effects of solar storms that create electromagnetic disturbances on earth that affect other satellites, communications and power grids. GOES-M is scheduled to launch from Cape Canaveral Air Force Station July 15 KSC-01pp1065

KENNEDY SPACE CENTER, Fla. -- At Complex 36-A, Cape Canaveral Air Force Station, the second stage of the Geostationary Operational Environmental Satellite-M (GOES-M) Atlas II rocket is lifted from the transporter. It will be raised to vertical and lifted up the gantry for mating with the first stage. The last in the current series of advanced geostationary weather satellites in service, GOES-M has a new instrument not on earlier spacecraft, a Solar X-ray Imager that can be used in forecasting space weather, the effects of solar storms that create electromagnetic disturbances on earth that affect other satellites, communications and power grids. GOES-M is scheduled to launch from Cape Canaveral Air Force Station July 15 KSC-01pp1064

KENNEDY SPACE CENTER, Fla. -- The Atlas II rocket roars into the sky with the GOES-M satellite on top. Liftoff occurred at 3:23:01 a.m. EDT from Launch Complex 36-A, Cape Canaveral Air Force Station. GOES-M is the last in the current series of advanced geostationary weather satellites in service. GOES-M has a new instrument not on earlier spacecraft, a Solar X-ray Imager, which can be used in forecasting space weather and the effects of solar storms KSC-01pp1366

KENNEDY SPACE CENTER, Fla. -- The GOES-M satellite is lifted up the launch tower at Complex 36-A, Cape Canaveral Air Force Station. GOES-M is the last in the current series of advanced geostationary weather satellites in service. GOES-M has a new instrument not on earlier spacecraft, a Solar X-ray Imager, which can be used in forecasting space weather and the effects of solar storms. The satellite is scheduled to launch atop an Atlas rocket July 15 KSC-01pp1263

KENNEDY SPACE CENTER, Fla. -- The GOES-M satellite is poised for flight at Launch Complex 36-A, Cape Canaveral Air Force Station, after rollback of the Mobile Service Tower. GOES-M is the last in the current series of advanced geostationary weather satellites in service. GOES-M has a new instrument not on earlier spacecraft, a Solar X-ray Imager, which can be used in forecasting space weather and the effects of solar storms. The satellite is scheduled to launch atop an Atlas rocket on July 23 during a window that extends from 3:02 to 4:26 a.m. EDT KSC01padig249

KENNEDY SPACE CENTER, Fla. -- The GOES-M satellite is lowered toward the Atlas rocket in the launch tower at Complex 36-A, Cape Canaveral Air Force Station. GOES-M is the last in the current series of advanced geostationary weather satellites in service. GOES-M has a new instrument not on earlier spacecraft, a Solar X-ray Imager, which can be used in forecasting space weather and the effects of solar storms. The satellite is scheduled to launch atop an Atlas rocket July 15 KSC-01pp1265

KENNEDY SPACE CENTER, Fla. -- Brightly lit clouds of steam and smoke roll across Launch Complex 36-A, Cape Canaveral Air Force Station, as the Atlas II rocket bearing the GOES-M satellite roars into the night sky. Liftoff occurred at 3:23:01 EDT. GOES-M is the last in the current series of advanced geostationary weather satellites in service. GOES-M has a new instrument not on earlier spacecraft, a Solar X-ray Imager, which can be used in forecasting space weather and the effects of solar storms KSC-01pp1372

KENNEDY SPACE CENTER, Fla. -- At Astrotech, Titusville, Fla., both halves of the fairing are being installed around the newest Geostationary Operational Environmental Satellite-M (GOES-M). The satellite is the last in the current series of advanced geostationary weather satellites in service. GOES-M has a new instrument not on earlier spacecraft, a Solar X-ray Imager that can be used in forecasting space weather, the effects of solar storms that create electromagnetic disturbances on earth that affect other satellites, communications and power grids. GOES is scheduled to launch from Launch Complex 36-A, Cape Canaveral Air Force Station, on an Atlas II rocket July 15 KSC-01pp1245

description

Summary

KENNEDY SPACE CENTER, Fla. -- At Astrotech, Titusville, Fla., both halves of the fairing are being installed around the newest Geostationary Operational Environmental Satellite-M (GOES-M). The satellite is the last in the current series of advanced geostationary weather satellites in service. GOES-M has a new instrument not on earlier spacecraft, a Solar X-ray Imager that can be used in forecasting space weather, the effects of solar storms that create electromagnetic disturbances on earth that affect other satellites, communications and power grids. GOES is scheduled to launch from Launch Complex 36-A, Cape Canaveral Air Force Station, on an Atlas II rocket July 15

Nothing Found.

label_outline

Tags

kennedy space center astrotech titusville halves both halves geostationary environmental satellite m environmental satellite m goes m satellite geostationary weather satellites instrument spacecraft solar x ray imager solar x ray imager space weather storms electromagnetic disturbances electromagnetic disturbances communications power grids power grids launch launch complex station cape canaveral air force station atlas rocket atlas ii rocket air force cape canaveral high resolution rocket engines rocket technology nasa
date_range

Date

02/07/2001
place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Both Halves, Electromagnetic Disturbances, Satellite M

Major Gen. Roger A Nadeau, Commanding General, U.S. Army Research, Development and Engineering Command hosts a Directors meeting at the Rodman Materials Research Facility. The instructor explains electromagnetic gun technology holding a roll of tape in his hand. At the conclusion of the meeting a tour of the Facility will be conducted by the Army Research Lab scientists and engineers. (U.S. Army PHOTO by Doug LaFon) (Released)

Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

KENNEDY SPACE CENTER, FLA. - After being raised to a vertical position, the first stage of an Atlas V rocket is being moved into the Vertical Integration Facility to begin preparations for launch on Launch Complex 41 at Cape Canaveral Air Force Station. The Lockheed Martin Atlas V is the launch vehicle for the New Horizons spacecraft, which is designed to make the first reconnaissance of Pluto and Charon - a "double planet" and the last planet in our solar system to be visited by spacecraft. The mission will then visit one or more objects in the Kuiper Belt region beyond Neptune. New Horizons is scheduled to launch in January 2006, swing past Jupiter for a gravity boost and scientific studies in February or March 2007, and reach Pluto and its moon, Charon, in July 2015. KSC-05pd2268

At Launch Pad 36A on the Cape Canaveral Air Station, the first stage of a Lockheed Martin Atlas II rocket is lifted into an upright position. The rocket will be used to launch the Geostationary Operational Environmental Satellite-L (GOES-L). GOES-L is the latest in the current series of advanced geostationary weather satellites in service. Once in orbit, it will become GOES-11 and function as an on-orbit spare to be activated when one of the operational satellites needs to be replaced. Launch is scheduled for Saturday, May 15 at the opening of a launch window which extends from 2:23 to 4:41 a.m. EDT KSC-99pp0423

CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station in Florida, the United Launch Alliance, or ULA, Atlas V rocket carrying NASA’s twin Radiation Belt Storm Probes, or RBSP, rolled out of the ULA Vertical Integration Facility at Space Launch Complex 41 at 1:59 p.m. EDT heading to the launch pad. The Atlas V rocket had been rolled back to the facility on August 26 to ensure the launch vehicle and RBSP spacecraft were secured and protected from inclement weather caused by Tropical Storm Isaac. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. The launch is rescheduled for 4:05 a.m. EDT on Aug. 30, pending approval from the range. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kim Shiflett KSC-2012-4693

KENNEDY SPACE CENTER, FLA. -- The Comet Nucleus Tour (CONTOUR) spacecraft is on display for the media in the Spacecraft Assembly and Encapsulation Facility 2. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station KSC-02pd0950

CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the agency's completed Orion spacecraft begins its trip from the Launch Abort System Facility to Launch Complex 37 at Cape Canaveral Air Force Station. Orion spent many months in Kennedy's Neil Armstrong Operations and Checkout Building undergoing final assembly. Hundreds of employees who work there signed the banner that states, "I'm On Board!" In doing so, their signature indicated they did their part to ensure mission success. After arrival at the launch pad, United Launch Alliance engineers and technicians will lift Orion and mount it atop its Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett KSC-2014-4423

KENNEDY SPACE CENTER, FLA. -- Workers help guide the Comet Nucleus Tour (CONTOUR) spacecraft as it is lowered onto the upper stage of a Boeing Delta II rocket for mating. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. Launch of CONTOUR aboard the Delta II is scheduled for July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station KSC-02pd1013

CAPE CANAVERAL, Fla. -- Ground support equipment technicians monitor the progress as crawler-transporter 1 begins its trek to Launch Pad 39A at NASA’s Kennedy Space Center in Florida. New jacking, equalizing and leveling, or JEL, hydraulic cylinders were installed on CT-1 and are being tested for increased load carrying capacity and reliability. The Vehicle Assembly Building is visible in the background. The Ground Systems Development and Operations Program at Kennedy continues to upgrade the crawler-transporter as part of its general maintenance. CT-1 could be available to carry a variety of launch vehicles to the launch pad. Two crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Daniel Casper KSC-2013-4203

KENNEDY SPACE CENTER, FLA. - In the mobile service tower on Launch Complex 37 at Cape Canaveral Air Force Station in Florida, workers check the attach points on the GOES-N spacecraft and Boeing Delta IV rocket. GOES-N is the latest in a series of Geostationary Operational Environmental Satellites for NOAA and NASA, providing continuous monitoring necessary for intensive data analysis. GOES-N is scheduled to be launched May 18 in an hour-long window between 6:14 and 7:14 p.m. EDT. Photo credit: NASA/Charisse Nahser KSC-06pd0766

CAPE CANAVERAL, Fla. – Workers inspect the solar arrays on the Magnetospheric Multiscale, or MMS, observatories in the Building 1 D high bay of the Astrotech payload processing facility in Titusville, Florida, near Kennedy Space Center. The two MMS spacecraft comprising the upper deck arrived Nov. 12; the two comprising the lower stack arrived Oct. 29. MMS, led by a team from NASA's Goddard Space Flight Center, is a Solar Terrestrial Probes mission consisting of four identically instrumented spacecraft that will use Earth’s magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration and turbulence. Launch aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station is targeted for March 12, 2015. To learn more about MMS, visit http://mms.gsfc.nasa.gov. Photo credit: NASA/Kim Shiflett KSC-2014-4492

The Atlas 1 payload fairing with the encapsulated GOES-K advanced weather satellite, at top center, is mated to the Lockheed Martin Atlas 1 expendable launch vehicle (AC-79) at Launch Complex 36, Pad B, Cape Canaveral Air Station. GOES-K will be the third spacecraft to be launched in the advanced series of Geostationary Operational Environmental Satellites (GOES). The GOES satellites are owned and operated by the National Oceanic and Atmospheric Administration (NOAA); NASA manages the design, development and launch of the spacecraft. GOES-K is targeted for an /1997/63-97.htm">April 24 launch</a> during a launch window which extends from 1:50-3:09 a.m. EDT KSC-97pc651

Topics

kennedy space center astrotech titusville halves both halves geostationary environmental satellite m environmental satellite m goes m satellite geostationary weather satellites instrument spacecraft solar x ray imager solar x ray imager space weather storms electromagnetic disturbances electromagnetic disturbances communications power grids power grids launch launch complex station cape canaveral air force station atlas rocket atlas ii rocket air force cape canaveral high resolution rocket engines rocket technology nasa