visibility Similar

KENNEDY SPACE CENTER, Fla. -- As the sun sinks in the west, Space Shuttle Endeavour on Launch Pad 39A is silhouetted. Only one solid rocket booster and external tank is visible with the Rotating Service Structure still in place. The 80-foot-tall fiberglass mast on top of the Fixed Service Structure points to the sky. Endeavour waits for mission STS-99, known as the Shuttle Radar Topography Mission (SRTM), which will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour KSC00pp0218

STS-134 - LAUNCH - Public domain NASA photogrpaph

Space Shuttle Atlantis, STS-122 - LAUNCH

CAPE CANAVERAL, Fla. – In the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, United Space Alliance technicians prepare to steady space shuttle Endeavour as it is lifted. Next, Endeavour will be hoisted over a transom and lowered into High Bay 1, where it will be attached to its external fuel tank and solid rocket boosters. Rollout of the shuttle stack to Kennedy’s Launch Pad 39A, a significant milestone in launch processing activities, is planned for early January 2010. The Italian-built Tranquility module, the primary payload for Endeavour's STS-130 mission, will be installed in the payload bay after the shuttle arrives at the pad. Launch is targeted for early February. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Dimitri Gerondidakis KSC-2009-6767

CAPE CANAVERAL, Fla. – Engineers and technicians move NASA's MAVEN spacecraft, inside a payload fairing, out of the Payload Hazardous Servicing Facility, or PHSF, to Space Launch Complex 41 where it will be hoisted atop a United Launch Alliance Atlas V rocket that will lift it into space and on to Mars. MAVEN is short for Mars Atmosphere and Volatile Evolution. Photo credit: NASA/Kim Shiflett KSC-2013-3877

STS-129 - LAUNCH - Public domain NASA photogrpaph

STS-130 - Public domain NASA photogrpaph

CAPE CANAVERAL, Fla. -- Space shuttle Discovery, atop the mobile launcher platform, makes the slow 3.4-mile journey via the broad, two-track crawlerway to Launch Pad 39A at NASA's Kennedy Space Center in Florida. First motion out of the Vehicle Assembly Building (at right) was at 5:17 a.m. EST. Discovery is targeted to launch to the International Space Station Feb. 12. During Discovery's 14-day mission, the crew will install the S6 truss segment and its solar arrays to the starboard side of the station, completing the station's backbone, or truss, enabling a six-person crew to live there starting in May. Photo credit: NASA/Troy Cryder KSC-2009-1121

CAPE CANAVERAL, Fla. - Space shuttle Endeavour is towed into the Mate-Demate Device, or MDD, at NASA's Kennedy Space Center in Florida after being backed out of the Vehicle Assembly Building. The MDD is located at the Shuttle Landing Facility at Kennedy. The shuttle will be lifted and connected to the top of NASA's Shuttle Carrier Aircraft SCA, a modified 747 jetliner. The shuttle has been fitted with an aerodynamic tailcone for its flight aboard the SCA to Los Angeles where it will be placed on public display. Photo credit: NASA/Dmitri Gerondidakis KSC-2012-5127

code Related

KENNEDY SPACE CENTER, Fla. -- As the sun sinks in the west, Space Shuttle Endeavour on Launch Pad 39A is silhouetted. Only one solid rocket booster and external tank is visible with the Rotating Service Structure still in place. The 80-foot-tall fiberglass mast on top of the Fixed Service Structure points to the sky. Endeavour waits for mission STS-99, known as the Shuttle Radar Topography Mission (SRTM), which will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour KSC00pp0218

KENNEDY SPACE CENTER, Fla. -- Just after sundown, the Rotating Service Structure is rolled back to reveal Space Shuttle Endeavour, mated with its solid rocket boosters (left and right) and external tank (center), poised for launch on mission STS-99. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST KSC-00pp0125

KENNEDY SPACE CENTER, Fla. -- Twin columns of flame flow from the solid rocket boosters, lighting the billows of steam behind them with an orange glow, as Space Shuttle Endeavour roars into space on mission STS-99. Liftoff occurred at 12:43:40 p.m. EST. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour KSC-00pp0221

KENNEDY SPACE CENTER, Fla. -- On Launch Pad 39A, Space Shuttle Endeavour is viewed late at night from a point on the Rotating Service Structure more than 225 feet from the ground. Abutting the side of Endeavour is the orbiter access arm with the environmental chamber known as the White Room at the end. The White Room provides access to the crew compartment. Endeavour waits for mission STS-99, known as the Shuttle Radar Topography Mission (SRTM), which will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour KSC00pp0216

KENNEDY SPACE CENTER, Fla. -- Clouds of steam and smoke nearly surround Space Shuttle Endeavour as it rises past the launch tower on Launch Pad 39A. Liftoff of the Shuttle on mission STS-99 occurred at 12:43:40 p.m. EST. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour KSC00pp0226

KENNEDY SPACE CENTER, Fla. -- Twin columns of flame flow from the solid rocket boosters, lighting the billows of steam behind them with an orange glow, as Space Shuttle Endeavour roars into space on mission STS-99. Liftoff occurred at 12:43:40 p.m. EST. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour KSC-00pp0228

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour is captured moments after liftoff from Launch Pad 39A. The water used for sound suppression (at left and below right) is just being released. In the upper background can be seen the Atlantic Ocean. Launch of Endeavour occurred at 12:43:40 p.m. EST. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour KSC00pp0229

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour seems to leap from the among the palmettos on its launch into the clear blue Florida sky. Launch of Endeavour on mission STS-99 occurred at 12:43:40 p.m. EST. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour KSC00pp0219

KENNEDY SPACE CENTER, Fla. -- Twin columns of flame flow from the solid rocket boosters, lighting the billows of steam behind them with an orange glow, as Space Shuttle Endeavour roars into space on mission STS-99. Liftoff occurred at 12:43:40 p.m. EST. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour KSC00pp0228

KENNEDY SPACE CENTER, Fla. -- As the sun sinks in the west, Space Shuttle Endeavour on Launch Pad 39A is silhouetted. Only one solid rocket booster and external tank is visible with the Rotating Service Structure still in place. The 80-foot-tall fiberglass mast on top of the Fixed Service Structure points to the sky. Endeavour waits for mission STS-99, known as the Shuttle Radar Topography Mission (SRTM), which will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour KSC-00pp0218

description

Summary

KENNEDY SPACE CENTER, Fla. -- As the sun sinks in the west, Space Shuttle Endeavour on Launch Pad 39A is silhouetted. Only one solid rocket booster and external tank is visible with the Rotating Service Structure still in place. The 80-foot-tall fiberglass mast on top of the Fixed Service Structure points to the sky. Endeavour waits for mission STS-99, known as the Shuttle Radar Topography Mission (SRTM), which will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the SRTM could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour

The Space Shuttle program was the United States government's manned launch vehicle program from 1981 to 2011, administered by NASA and officially beginning in 1972. The Space Shuttle system—composed of an orbiter launched with two reusable solid rocket boosters and a disposable external fuel tank— carried up to eight astronauts and up to 50,000 lb (23,000 kg) of payload into low Earth orbit (LEO). When its mission was complete, the orbiter would re-enter the Earth's atmosphere and lands as a glider. Although the concept had been explored since the late 1960s, the program formally commenced in 1972 and was the focus of NASA's manned operations after the final Apollo and Skylab flights in the mid-1970s. It started with the launch of the first shuttle Columbia on April 12, 1981, on STS-1. and finished with its last mission, STS-135 flown by Atlantis, in July 2011.

label_outline

Tags

kennedy space center sun endeavour space shuttle endeavour launch pad rocket booster rocket booster tank service structure fiberglass mast points service structure points sky sts mission sts radar topography shuttle radar topography mission srtm chart course images earth surface trillion measurements trillion measurements ksc tuesday shuttle flight shuttle endeavour ksc space shuttle nasa
date_range

Date

1960 - 1969
collections

in collections

Space Shuttle Program

place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Shuttle Endeavour Ksc, Ksc Tuesday, Fiberglass

Fiberglass manufacture, Owens-Corning, Toledo, Ohio. Fiberglass yarns are twisted and plied on standard textile machinery as a step in the manufacture of tapes and cloths, used principally to insulate electric equipment operating under heavier loads today than ever before

Workers hold onto guide cables as the upper half of a radome enclosure is moved into position at the site of a telemetry antenna. The polyurethane and fiberglass enclosure will protect the antenna from environmental damage while only slightly decreasing its receiving capabilities

A test section of the fiberglass hull of a surface effect ship (SES) measuring 46 feet long by 39 feet wide and weighing 103 tons is lowered into the water for shock testing

KENNEDY SPACE CENTER, FLA. -- Inside the VAB, orbiter Endeavour is lifted to a vertical position before being mated to the external tank (bottom of photo) and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1381

In the Space Station Processing Facility, the STS-99 crew pose in front of the Shuttle Radar Topography Mission, the payload for their mission. From left are Mission Specialists Mamoru Mohri of Japan, Janet Lynn Kavandi (Ph.D.), and Janice Voss (Ph.D.); Commander Kevin R. Kregel; Mission Specialist Gerhard Thiele of Germany; and Pilot Dominic L. Pudwill Gorie. Mohri represents the National Space Development Agency of Japan and Thiele represents the European Space Agency. An international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR, the SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0776

KENNEDY SPACE CENTER, Fla. -- At the 167-foot level of the Fixed Service Structure on Launch Pad 39A, the STS-99 crew pose for a photograph during Terminal Countdown Demonstration Test (TCDT) activities. Standing left to right are Mission Specialist Janet Lynn Kavandi (Ph.D.), Commander Kevin Kregel, Mission Specialists Janice Voss (Ph.D.), Gerhard Thiele and Mamoru Mohri, and Pilot Dominic Gorie. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Behind them (left) are visible the top of a solid rocket booster (white) and external tank (orange). The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST KSC00pp0044

At Launch Pad 39A, orbiter Endeavour's open payload bay doors reveal the payload on the Shuttle Radar Topography Mission, STS-99. The mission will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST KSC-00pp0088

During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) is ready to practice driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST KSC-00pp0018

In OPF bay 2, the Shuttle Radar Topography Mission (SRTM) payload is lifted out of Endeavour's payload bay for transport to the Space Station Processing Facility. The SRTM mapped more than 47 million square miles of the Earth's surface on mission STS-99, which landed Feb. 22, 2000 KSC-00pp0289

KENNEDY SPACE CENTER, FLA. -- In this dizzying view from overhead in high bay 1 of the VAB, the orbiter Endeavour is lowered for mating with the external tank below (on left), and the solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1382

KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-99 Mission Specialists Gerhard Thiele (Ph.D.), of the European Space Agency (in front), and Janet Kavandi (Ph.D.) prepare to practice emergency egress procedures with a slidewire basket. Seven slidewires, with flatbottom baskets suspended from each wire, extend from the Fixed Service Structure at the orbiter access arm level. These baskets could provide an escape route for the astronauts until the final 30 seconds of the countdown in case of an emergency. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST. KSC00pp0074

KENNEDY SPACE CENTER, Fla. -- Near the bunker at Launch Pad 39A, STS-99 Mission Specialists Janice Voss (Ph.D.), Gerhard Thiele and Mamoru Mohri check out the slidewire basket used for emergency egress. The crew are taking part in Terminal Countdown Demonstration Test activities, which provide them with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST KSC-00pp0048

Topics

kennedy space center sun endeavour space shuttle endeavour launch pad rocket booster rocket booster tank service structure fiberglass mast points service structure points sky sts mission sts radar topography shuttle radar topography mission srtm chart course images earth surface trillion measurements trillion measurements ksc tuesday shuttle flight shuttle endeavour ksc space shuttle nasa