code Related

Patent drawing - Missile expulsion motor Fig. 1 (axial section) Public domain image

description

Summary

Axial section part-sectioned side view of the rearward portion of a missile showing the location of an expulsion motor

Nothing Found.

label_outline

Tags

patents patent drawings us patent office cutaways of missiles rocket motors inventions
date_range

Date

31/10/1986
create

Source

USPTO
link

Link

http://uspto.gov/
copyright

Copyright info

public domain

label_outline Explore Rocket Motors

VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron KSC-2015-1090

VANDENBERG AIR FORCE BASE, Calif. – Workers inspect NASA's Soil Moisture Active Passive, or SMAP, spacecraft after its protective covering is removed in the Astrotech payload processing facility on Vandenberg Air Force Base in California during a post-shipment inspection. The covering protected the spacecraft from static-charge buildup and contamination while it was in transit from NASA's Jet Propulsion Laboratory in Pasadena, California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Robert Rasmison KSC-2014-4269

Solid Rocket Booster - Space Shuttle Projects

A row of metal lamps sitting next to each other. Rocket motors rocket engines propulsion.

KENNEDY SPACE CENTER, FLA. -- Preparations to move the mobile service tower, or gantry, from around the Delta II 7925 rocket are under way under the lights on Launch Pad 17A at Cape Canaveral Air Force Station. Equipped with three stages and nine strap-on solid rocket motors, the Delta II rocket packs plenty of punch for sending the Phoenix spacecraft on its way toward Mars. Launch is targeted for Aug. 4 during one of two opportunities for liftoff: 5:26 or 6:02 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Jim Grossmann KSC-07pd2163

KENNEDY SPACE CENTER, FLA. -- Rollback of the mobile service tower, or gantry, from around the Delta II 7925 rocket is complete on Launch Pad 17A at Cape Canaveral Air Force Station. Equipped with three stages and nine strap-on solid rocket motors, the Delta II rocket packs plenty of punch for sending the Phoenix spacecraft on its way toward Mars. Launch is targeted for Aug. 4 during one of two opportunities for liftoff: 5:26 or 6:02 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Jim Grossmann KSC-07pd2168

KENNEDY SPACE CENTER, FLA. -- The Delta II 7925 rocket is revealed as the mobile service tower, or gantry, rolls back on Launch Pad 17A at Cape Canaveral Air Force Station. Equipped with three stages and nine strap-on solid rocket motors, the Delta II rocket packs plenty of punch for sending the Phoenix spacecraft on its way toward Mars. Launch is targeted for Aug. 4 during one of two opportunities for liftoff: 5:26 or 6:02 a.m. EDT. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. Photo credit: NASA/Jim Grossmann KSC-07pd2165

VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway to attach NASA's Soil Moisture Active Passive, or SMAP, spacecraft to the Delta II payload attach structure in the Astrotech payload processing facility on Vandenberg Air Force Base in California. The structure will secure the spacecraft to the rocket's second stage. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Chris Wiant, U.S. Air Force Photo Squadron KSC-2015-1081

CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a solid rocket booster is raised from its transporter. The booster will be lifted into the mobile service tower for mating with the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis KSC-08pd0852

VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians use a crane to move a component of NASA's Soil Moisture Active Passive, or SMAP, spacecraft for a lift by a crane. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/ Robert Rasmison KSC-2014-4298

VANDENBERG AIR FORCE BASE, Calif. – Workers prepare the second stage of the Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, for its lift into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to install the second stage atop the rocket's first stage. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for no earlier than November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin KSC-2014-3612

The solid rocket motors of the Delta II rocket which will to be used to launch the Advanced Composition Explorer (ACE) spacecraft are erected at Launch Complex 17A at Cape Canaveral Air Station. Scheduled for launch on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The ACE observatory will be placed into an orbit almost a million miles (1.5 million kilometers) away from the Earth, about 1/100 the distance from the Earth to the Sun KSC-97PC1170

Topics

patents patent drawings us patent office cutaways of missiles rocket motors inventions