visibility Similar

KENNEDY SPACE CENTER, FLA. - At SPACEHAB in Cape Canaveral, Fla., the STS-116 crew poses with the workers during a familiarization period. On the stairs, bottom to top, are Pilot William Oefelein, Mission Specialists Joan Higginbotham, Nicholas Patrick, Robert Curbeam, Christer Fuglesang and Sunita Williams, and Commander Mark Polansky. The Swedish Fuglesang represents the European Space Agency. Mission crews make frequent trips to the Space Coast to become familiar with the equipment and payloads they will be using. STS-116 will be mission number 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/George Shelton KSC-06pd2238

KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, workers lower the Mars Exploration Rover-2 (MER-2) onto the base petal of its lander assembly. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day over various terrain. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover, a window opening June 25. KSC-03pd0881

NASA's Lunar Reconnaissance Orbiter (LRO) ROTATION & LIFT

Krozun and Whitson place mission stickers on panel in Node 1 during STS-113 / EXP. 5

NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft/ Lunar Orbiter Laser Altimeter (LOLA)

Fly-around view of the ISS by the STS-127 crew

HUBBLE SPACE TELESCOPE CREW FOR Infrared Array Camera (IRAC)

S114E7491 - STS-114 - Lawrence and Kelly at SSRMS controls in Destiny laboratory module

Technicians check out the Gamma Ray Spectrometer (GRS) before it is installed on the Mars Odyssey Orbiter in the Spacecraft Assembly and Encapsulation Facility II (SAEF II) .; The orbiter will carry three science instruments: the Thermal Emission Imaging System (THEMIS), the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. [The GRS is a rebuild of the instrument lost with the Mars Observer mission.] The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta 7925 rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0188

code Related

Mars Exploration Rover -2. NASA public domain image. Kennedy space center.

description

Summary

Components of the two Mars Exploration Rovers (MER) reside in the Payload Hazardous Servicing Facility. At right MER-2. At left is a lander. In the background is one of the aeroshells. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.

Nothing Found.

label_outline

Tags

ksc 03 pd 0654 kennedy space center mars exploration rover mars exploration rover high resolution nasa
date_range

Date

06/03/2003
place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Mars Exploration Rover, Rover, Mars

CAPE CANAVERAL, Fla. – As part of NASA's Ground Systems Development and Operations Program at the Kennedy Space Center in Florida, a large space shuttle-era work platform is being lowered and removed from high bay 3 of the Vehicle Assembly Building, or VAB. The work is part of a center-wide modernization and refurbishment initiative to accommodate NASA’s Space Launch System and a variety of other spacecraft instead of the whole building supporting one design. The Ground Systems Development and Operations Program is developing the necessary ground systems, infrastructure and operational approaches required to safely process, assemble, transport and launch the next generation of rockets and spacecraft in support of NASA’s exploration objectives. Future work also will replace the antiquated communications, power and vehicle access resources with modern efficient systems. Some of the utilities and systems slated for replacement have been used since the VAB opened in 1965. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann KSC-2012-5965

Iron-Nickel Meteorite Zapped by Mars Rover Laser

CAPE CANAVERAL, Fla. – A view from above inside the Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, shows the service module for the Orion spacecraft secured to a work stand. Technicians are preparing the three fairings for installation around the service module. The Orion spacecraft is being prepared for its first unpiloted flight test, Exploration Flight Test-1, or EFT-1, scheduled for launch atop a Delta IV rocket in September 2014. The Orion spacecraft is designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. Orion is scheduled to launch atop NASA’s Space Launch System rocket in 2017. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper KSC-2013-4524

GODDARD SPACE FLIGHT CENTER EXPLORATION SCIENCE BUILDING

EXPLORATION SCIENCES BUILDING 34 RIBBON CUTTING CEREMONY GODDARD SPACE FLIGHT CENTER

KENNEDY SPACE CENTER, FLA. - Two students at Ronald E. McNair High School in Atlanta proudly display the banner identifying McNair as a NASA Explorer School. The students enjoyed a presentation earlier by KSC Deputy Director Dr. Woodrow Whitlow Jr., astronaut Leland Melvin and Dr. Julian Earls, director of NASA Glenn Research Center. Whitlow talked with students about our destiny as explorers, NASA’s stepping stone approach to exploring Earth, the Moon, Mars and beyond, how space impacts our lives, and how people and machines rely on each other in space. Dr. Earls discussed the future and the vision for space, plus the NASA careers needed to meet the vision. Melvin talked about the importance of teamwork and what it takes for mission success. KSC-04pd1995

CAPE CANAVERAL, Fla. -- A crane positions the 106.5-foot-long first stage of the Atlas V rocket for NASA's Mars Science Laboratory (MSL) mission inside the Vertical Integration Facility at Space Launch Complex 41 on Cape Canaveral Air Force Station. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 with a window extending to Dec. 18 and arrival at Mars Aug. 2012. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Cory Huston KSC-2011-6840

KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers complete encapsulation of the fairing around NASA's Dawn spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller KSC-07pd1721

Directors Colloquium: Science Seminar by John Coates, Associate Professor of Microbiology at the University of California, Berkeley, on Microbial Perchlorate Reduction. The discovery of perchlorate in soils at the Phoenix Landing site, makes this type of organisms interesting analogues to potential life on Mars. ARC-2009-ACD09-0055-002

GODDARD SPACE FLIGHT CENTER EXPLORATION SCIENCE BUILDING

Cabana Multi-User Spaceport Tour of KSC

CAPE CANAVERAL, Fla. -- With NASA's Mars Science Laboratory (MSL) spacecraft sealed inside its payload fairing, the United Launch Alliance Atlas V rocket rides a plume of flames as it climbs into the blue sky over Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 10:02 a.m. EST Nov. 26. MSL's components include a car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and help determine if the gas is from a biological or geological source. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/George Roberts KSC-2011-7986

Topics

ksc 03 pd 0654 kennedy space center mars exploration rover mars exploration rover high resolution nasa