visibility Similar

VANDENBERG AIR FORCE BASE, Calif. -- At left, the second half of the fairing is moved toward NASA's Orbiting Carbon Observatory, or OCO, at right, for installation. The work is being done in Building 1032 of Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Robert Hargreaves Jr., VAFB KSC-2009-1591

CAPE CANAVERAL, Fla. -- A canister, carrying the Alpha Magnetic Spectrometer-2 AMS and Express Logistics Carrier-3 for space shuttle Endeavour's STS-134 mission, is rotated from a horizontal to vertical position in the Canister Rotation Facility at NASA's Kennedy Space Center in Florida. Endeavour and its six-member STS-134 crew are targeted to lift off April 19 at 7:48 p.m. EDT to deliver the payload to the International Space Station. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller KSC-2011-2350

KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility help guide the Mars Exploration Rover (MER) aeroshell onto a rotation stand. Set to launch in 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003. KSC-03pd0236

VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base's Astrotech processing facility in California, NASA's Wide-field Infrared Survey Explorer, or WISE, spacecraft is lowered toward the flight conical adapter and test stand. The satellite will survey the entire sky at infrared wavelengths, creating a cosmic clearinghouse of hundreds of millions of objects, which will be catalogued, providing a vast storehouse of knowledge about the solar system, the Milky Way, and the universe. Launch is scheduled no earlier than Dec. 7. Photo credit: NASA/Doug Kolkow KSC-2009-4859

KENNEDY SPACE CENTER, FLA. - In Hangar AE at Cape Canaveral Air Force Station, Spectrum Astro workers look at the final pieces of protective cover on the Swift spacecraft that must be removed. Swift is a first-of-its-kind, multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma-ray, X-ray and optical wavebands. Swift is part of NASA’s medium explorer (MIDEX) program being developed by an international collaboration. During its nominal 2-year mission, Swift is expected to observe more than 200 bursts, which will represent the most comprehensive study of GRB afterglow to date. It is scheduled for launch into a low-Earth orbit on a Delta 7320 rocket on Oct. 7. KSC-04pd1616

CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians have begun the process to stow the power-generating solar arrays for the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft. MAVEN is being prepared for its scheduled launch on Nov 18, 2013 from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/Jim Grossmann KSC-2013-3684

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., a light test on the solar arrays are complete on this probe of the THEMIS spacecraft. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. These lights are the visible manifestations of invisible energy releases, called geomagnetic substorms, in near-Earth space. THEMIS will not only seek to answer where and when substorms start, but will also provide clues as to how and why these space storms create havoc on satellites, terrestrial power grids, and communication systems. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller KSC-06pd2811

KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., a solar array on one of the THEMIS probes undergoes a light test. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. These lights are the visible manifestations of invisible energy releases, called geomagnetic substorms, in near-Earth space. THEMIS will not only seek to answer where and when substorms start, but will also provide clues as to how and why these space storms create havoc on satellites, terrestrial power grids, and communication systems. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller KSC-06pd2810

STS-130 PAYLOAD CANISTER TURN FROM HORIZONAL TO VERTICAL 2010-1238

code Related

In the Space Assembly and Encapsulation Building 2, an overhead crane moves the 2001 Mars Odyssey Orbiter from its workstand while workers watch. The orbiter is being transferred to a spin table for testing. The orbiter carries three science instruments THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE) that will map the mineralogy and morphology of the Martian surface, the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface, and characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0574

The 2001 Mars Odyssey Orbiter, suspended by an overhead crane in the Space Assembly and Encapsulation Building 2, moves toward the spin table at left where it will be tested. The orbiter is being transferred to a spin table for testing. The orbiter carries three science instruments THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE) that will map the mineralogy and morphology of the Martian surface, the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface, and characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0575

With workers keeping watch, the 2001 Mars Odyssey Orbiter, suspended by an overhead crane in the Space Assembly and Encapsulation Building 2, moves toward the spin table at left where it will be tested. The orbiter is being transferred to a spin table for testing. The orbiter carries three science instruments THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE) that will map the mineralogy and morphology of the Martian surface, the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface, and characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0576

Workers in the Space Assembly and Encapsulation Building 2 prepare the overhead crane that will lift and move the 2001 Mars Odyssey Orbiter to the spin table for testing. The orbiter carries three science instruments THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE) that will map the mineralogy and morphology of the Martian surface, the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface, and characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0571

Workers in the Space Assembly and Encapsulation Building 2 make a last-minute check on the 2001 Mars Odyssey Orbiter before it undergoes spin testing. The orbiter carries three science instruments THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE) that will map the mineralogy and morphology of the Martian surface, the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface, and characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0579

Workers in the Space Assembly and Encapsulation Building 2 prepare the 2001 Mars Odyssey Orbiter for its move to the spin table for testing. The orbiter carries three science instruments THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE) that will map the mineralogy and morphology of the Martian surface, the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface, and characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0570

Workers in the Space Assembly and Encapsulation Building 2 prepare to move the 2001 Mars Odyssey Orbiter to the spin table for testing. The orbiter carries three science instruments THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE) that will map the mineralogy and morphology of the Martian surface, the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface, and characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0569

Workers in the Space Assembly and Encapsulation Building 2 prepare the spin table that will test the 2001 Mars Odyssey Orbiter. The orbiter carries three science instruments THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE) that will map the mineralogy and morphology of the Martian surface, the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface, and characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0572

The 2001 Mars Odyssey Orbiter rests on the spin table in the Space Assembly and Encapsulation Building 2. There it will undergo testing. The orbiter carries three science instruments THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE) that will map the mineralogy and morphology of the Martian surface, the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface, and characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0578

In the Space Assembly and Encapsulation Building 2, an overhead crane lifts the 2001 Mars Odyssey Orbiter off its workstand while workers watch its movement. The orbiter is being transferred to a spin table (left, in the foreground) for testing. The orbiter carries three science instruments THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE) that will map the mineralogy and morphology of the Martian surface, the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface, and characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station KSC01pp0573

description

Summary

In the Space Assembly and Encapsulation Building 2, an overhead crane lifts the 2001 Mars Odyssey Orbiter off its workstand while workers watch its movement. The orbiter is being transferred to a spin table (left, in the foreground) for testing. The orbiter carries three science instruments THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE) that will map the mineralogy and morphology of the Martian surface, the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface, and characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers. The Mars Odyssey Orbiter is scheduled for launch on April 7, 2001, aboard a Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Force Station

Nothing Found.

label_outline

Tags

kennedy space center space encapsulation mars odyssey orbiter mars odyssey orbiter workstand workers movement spin table spin table foreground science instruments themis three science instruments themis gamma ray spectrometer gamma ray spectrometer grs radiation environment experiment mars radiation environment experiment marie map mineralogy morphology martian surface martian surface composition abundance hydrogen near space radiation environment risk explorers delta rocket delta ii rocket launch pad station cape canaveral air force station ksc air force cape canaveral maps geology satellite nasa
date_range

Date

19/03/2001
place

Location

Cape Canaveral, FL
create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Three Science Instruments Themis, Spin Table, Near Space Radiation Environment

The Inertial Upper Stage (IUS) booster is lowered toward a workstand in Kennedy Space Center's Vertical Processing Facility. The IUS will be mated with the Chandra X-ray Observatory and then undergo testing to validate the IUS/Chandra connections and check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93 KSC-99pp0619

Martian Surface & Pathfinder Airbags, Mars Pathfinder Images

KENNEDY SPACE CENTER, FLA. -- The Comet Nucleus Tour (CONTOUR) spacecraft is on display for the media in the Spacecraft Assembly and Encapsulation Facility 2. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station KSC-02pd0950

KENNEDY SPACE CENTER, FLA. -- Workers help guide the Comet Nucleus Tour (CONTOUR) spacecraft as it is lowered onto the upper stage of a Boeing Delta II rocket for mating. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. Launch of CONTOUR aboard the Delta II is scheduled for July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station KSC-02pd1013

S37-96-015 - STS-037 - Gamma Ray Observatory (GRO) drifts in space after STS-37 deployment

Pathfinder and Sojourner. NASA public domain image colelction.

KENNEDY SPACE CENTER, FLA. -- The last of the workers dressed in their SCAPE suits file into the vehicle that will take them to the Spacecraft Assembly and Encapsulation Facility 2 (SAEF-2) to fuel the Comet Nucleus Tour (CONTOUR) spacecraft. SCAPE refers to Self-Contained Atmospheric Protective Ensemble. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Boeing Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station KSC-02pd0962

South Polar Cap of Mars as seen by Mariners 9 & 7

[General Railway Signal Co. Retarder, Texas & Pacific Railway Company]

S37-99-057 - STS-037 - The Gamma Ray Observatory (GRO) grappled by the RMS during STS-37 deployment

S37-96-021 - STS-037 - Gamma Ray Observatory (GRO) drifts in space after STS-37 deployment

S37-99-079 - STS-037 - The Gamma Ray Observatory (GRO) grappled by the RMS during STS-37 deployment

Topics

kennedy space center space encapsulation mars odyssey orbiter mars odyssey orbiter workstand workers movement spin table spin table foreground science instruments themis three science instruments themis gamma ray spectrometer gamma ray spectrometer grs radiation environment experiment mars radiation environment experiment marie map mineralogy morphology martian surface martian surface composition abundance hydrogen near space radiation environment risk explorers delta rocket delta ii rocket launch pad station cape canaveral air force station ksc air force cape canaveral maps geology satellite nasa