visibility Similar

00padig001. NASA public domain image. Kennedy space center.

STS-127 - LAUNCH - Public domain NASA photogrpaph

STS-125 - LAUNCH - Public domain NASA photogrpaph

STS-133 - LAUNCH - Public domain NASA photogrpaph

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis' engines and solid rocket boosters ignite on Launch Pad 39A as it begins to lift off on its STS-135 mission to the International Space Station. Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tony Gray and Tom Farrar KSC-2011-5404

STS-132 - LAUNCH - Public domain NASA photogrpaph

STS-135 - LAUNCH - Public domain NASA photogrpaph

STS-133 - Public domain NASA photogrpaph

STS-127 - LAUNCH - Public domain NASA photogrpaph

KENNEDY SPACE CENTER, Fla. -- After rollback of the Rotating Service Structure at Launch Pad 39A, Space Shuttle Endeavour, mated with its solid rocket boosters (left and right) and external tank (center), is bathed in light, ready for launch on mission STS-99. On top of the external tank, a light gleams like a star on the 13-foot-wide Gaseous Oxygen Vent Hood, often called the "beanie cap." The hood helps vent gaseous oxygen vapors away from the Space Shuttle. The hood will be raised and retracted two and a half minutes before launch. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled for liftoff at 12:30 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the mission could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last about 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour KSC00padig001

description

Summary

KENNEDY SPACE CENTER, Fla. -- After rollback of the Rotating Service Structure at Launch Pad 39A, Space Shuttle Endeavour, mated with its solid rocket boosters (left and right) and external tank (center), is bathed in light, ready for launch on mission STS-99. On top of the external tank, a light gleams like a star on the 13-foot-wide Gaseous Oxygen Vent Hood, often called the "beanie cap." The hood helps vent gaseous oxygen vapors away from the Space Shuttle. The hood will be raised and retracted two and a half minutes before launch. STS-99, known as the Shuttle Radar Topography Mission (SRTM), is scheduled for liftoff at 12:30 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface. The result of the mission could be close to 1 trillion measurements of the Earth's topography. The mission is expected to last about 11days, with Endeavour landing at KSC Tuesday, Feb. 22, at 4:36 p.m. EST. This is the 97th Shuttle flight and 14th for Shuttle Endeavour

The Space Shuttle program was the United States government's manned launch vehicle program from 1981 to 2011, administered by NASA and officially beginning in 1972. The Space Shuttle system—composed of an orbiter launched with two reusable solid rocket boosters and a disposable external fuel tank— carried up to eight astronauts and up to 50,000 lb (23,000 kg) of payload into low Earth orbit (LEO). When its mission was complete, the orbiter would re-enter the Earth's atmosphere and lands as a glider. Although the concept had been explored since the late 1960s, the program formally commenced in 1972 and was the focus of NASA's manned operations after the final Apollo and Skylab flights in the mid-1970s. It started with the launch of the first shuttle Columbia on April 12, 1981, on STS-1. and finished with its last mission, STS-135 flown by Atlantis, in July 2011.

label_outline

Tags

kennedy space center rollback service structure launch pad endeavour space shuttle endeavour rocket boosters rocket boosters tank light sts mission sts gleams light gleams star oxygen vent hood oxygen vent hood beanie cap beanie cap vapors oxygen vapors space shuttle half minutes half minutes radar topography shuttle radar topography mission srtm liftoff chart course images earth surface trillion measurements trillion measurements ksc tuesday shuttle flight shuttle endeavour ksc padig high resolution nasa
date_range

Date

11/02/2000
collections

in collections

Space Shuttle Program

place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Half Minutes, Light Gleams, Gleams

KENNEDY SPACE CENTER, FLA. -- Inside the VAB, orbiter Endeavour is lifted to a vertical position before being mated to the external tank (bottom of photo) and solid rocket boosters in high bay 1. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1381

U.S. Marine Corps CPL. Tameka Y. Shanks, Combat Engineer, attached to the 4th Civil Affair Detachment, 31st Marine Expeditionary Unit, talks with an Iraqi girl and presents her with a Beanie Baby during a visit. The detachment brought toys, food and supplies to the small village during Security and Stabilization Operations in the Western Al Anbar Province of Iraq. Dec. 30, 2004. (U.S. Marine Corps photo by GUNNERY SGT. Kevin W. Williams) (Released)

A person wearing a black jacket and a black hat. Girl hat toque.

KENNEDY SPACE CENTER, Fla. -- In the early morning hours, the Rotating Service Structure (left) begins rolling back to free Space Shuttle Discovery for launch of mission STS-92 at 8:05 p.m. Oct. 9. Above the external tank can be seen the Gaseous Oxygen Vent Arm with its vent hood, commonly referred to as the “beanie cap.” The system is designed to vent gaseous oxygen vapors away from the Shuttle after cryogenic loading. The scheduled launch is the second attempt after an earlier scrub. STS-92 is making the fifth flight for construction of the International Space Station. The mission is also the 100th in the history of the Shuttle program KSC-00pp1508

Gleams of sunshine - Public domain American sheet music

KENNEDY SPACE CENTER, FLA. - The morning sky lightens behind Space Shuttle Atlantis while lights on the fixed service structure (FSS) still illuminate the orbiter on Launch Pad 39B. Atlantis was originally scheduled to launch at 12:29 p.m. EDT on this date, but a 24-hour scrub was called by mission managers due to a concern with Fuel Cell 1. Seen poised above the orange external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Extending from the FSS to Atlantis is the orbiter access arm with the White Room at the end. The White Room provides entry into the orbiter through the hatch. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Troy Cryder KSC-06pd2050

KENNEDY SPACE CENTER, Fla. -- At the 167-foot level of the Fixed Service Structure on Launch Pad 39A, the STS-99 crew pose for a photograph during Terminal Countdown Demonstration Test (TCDT) activities. Standing left to right are Mission Specialist Janet Lynn Kavandi (Ph.D.), Commander Kevin Kregel, Mission Specialists Janice Voss (Ph.D.), Gerhard Thiele and Mamoru Mohri, and Pilot Dominic Gorie. Thiele is with the European Space Agency and Mohri is with the National Space Development Agency (NASDA) of Japan. Behind them (left) are visible the top of a solid rocket booster (white) and external tank (orange). The TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST KSC00pp0044

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-99 Mission Specialists Janet Lynn Kavandi (Ph.D.) and Gerhard P.J. Thiele look over part of the Shuttle Radar Topography Mission (SRTM), primary payload for their mission, as part of a Crew Equipment Interface Test (CEIT). Also taking part in the CEIT are Commander Kevin R. Kregel, Pilot Dominic L. Pudwill Gorie, and Mission Specialists Janice Voss (Ph.D.) and Mamoru Mohri. Mohri is with the National Space Development Agency (NASDA) of Japan, and Thiele is with the European Space Agency. The CEIT provides an opportunity for crew members to check equipment and facilities that will be aboard the orbiter during their mission. The SRTM is a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle. STS-99 is scheduled to launch Sept. 16 at 8:47 a.m. from Launch Pad 39A KSC-99pp0999

Nautical from "Polar Gleams. An account of a voyage on the yacht 'Blencathra' ... With a preface by the Marquess of Dufferin and Ava and contributions by Capt. J. Wiggins and F. G. Jackson. [Illustrated.]"

KENNEDY SPACE CENTER, FLA. -- In this dizzying view from overhead in high bay 1 of the VAB, the orbiter Endeavour is lowered for mating with the external tank below (on left), and the solid rocket boosters. Space Shuttle Endeavour is targeted for launch on mission STS-99 Jan. 13, 2000, at 1:11 p.m. EST. STS-99 is the Shuttle Radar Topography Mission, an international project spearheaded by the National Imagery and Mapping Agency and NASA, with participation of the German Aerospace Center DLR. The SRTM consists of a specially modified radar system that will gather data for the most accurate and complete topographic map of the Earth's surface that has ever been assembled. SRTM will make use of radar interferometry, wherein two radar images are taken from slightly different locations. Differences between these images allow for the calculation of surface elevation, or change. The SRTM hardware will consist of one radar antenna in the shuttle payload bay and a second radar antenna attached to the end of a mast extended 60 meters (195 feet) out from the shuttle KSC-99pp1382

KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-99 Mission Specialists Gerhard Thiele (Ph.D.), of the European Space Agency (in front), and Janet Kavandi (Ph.D.) prepare to practice emergency egress procedures with a slidewire basket. Seven slidewires, with flatbottom baskets suspended from each wire, extend from the Fixed Service Structure at the orbiter access arm level. These baskets could provide an escape route for the astronauts until the final 30 seconds of the countdown in case of an emergency. The crew is taking part in Terminal Countdown Demonstration Test (TCDT) activities that provide the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST. KSC00pp0074

STS031-11-020 - STS-031 - STS-31 crew activities

Topics

kennedy space center rollback service structure launch pad endeavour space shuttle endeavour rocket boosters rocket boosters tank light sts mission sts gleams light gleams star oxygen vent hood oxygen vent hood beanie cap beanie cap vapors oxygen vapors space shuttle half minutes half minutes radar topography shuttle radar topography mission srtm liftoff chart course images earth surface trillion measurements trillion measurements ksc tuesday shuttle flight shuttle endeavour ksc padig high resolution nasa