visibility Similar

Arrays of lights (left) in the Spacecraft Assembly and Encapsulation Facility (SAEF 2) are used for illumination testing on the solar array panels at right. The panels are part of on the 2001 Mars Odyssey Orbiter. Scheduled for launch April 7, 2001, the orbiter contains three science instruments: THEMIS, the Gamma Ray Spectrometer (GRS), and the Mars Radiation Environment Experiment (MARIE). THEMIS will map the mineralogy and morphology of the Martian surface using a high-resolution camera and a thermal infrared imaging spectrometer. The GRS will achieve global mapping of the elemental composition of the surface and determine the abundance of hydrogen in the shallow subsurface. The MARIE will characterize aspects of the near-space radiation environment with regards to the radiation-related risk to human explorers KSC-01pp0488

KENNEDY SPACE CENTER, FLA. — In the Space Station Processing Facility at NASA Kennedy Space Center, a supply rack is moved toward the opening of the multi-purpose logistics module Leonardo (at left). A technician (right) checks the alignment on the bottom. The module is being prepared for the second return-to-flight mission, STS-121, on space shuttle Discovery, carrying more than two tons of equipment and supplies to the International Space Station. This will be the fourth trip to the station for Leonardo, the first of three Italian-built logistics modules. Equipment and supplies no longer needed on the station will be moved to Leonardo before it is unberthed on Flight Day 10 and put back into Discovery's cargo bay for return to Earth. This second return-to-flight test mission is to carry on analysis of safety improvements that debuted on the first return-to-flight mission, STS-114, and build upon those tests. The launch is targeted for a date no earlier than May. Photo credit: NASA/Jack Pfaller KSC-06pd0128

KENNEDY SPACE CENTER, Fla. -- The PICOSat payload undergoes final preparations for its launch aboard the Athena 1 launch vehicle at Kodiak Island, Alaska, as preparations to launch Kodiak Star proceed. The first launch to take place from Alaska's Kodiak Launch Complex, Kodiak Star is scheduled to lift off on a Lockheed Martin Athena I launch vehicle on Sept. 17 during a two-hour window that extends from 5:00 to 7:00 p.m. ADT. The payloads aboard include the Starshine 3, sponsored by NASA, and the PICOSat, PCSat and Sapphire, sponsored by the Department of Defense (DoD) Space Test Program KSC01kodi067

NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft at Goddard Space Flight Center

NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft

KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers prepare the twin observatories known as STEREO for encapsulation in the fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton KSC-06pd2370

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, an overhead crane lifts the JEM Experiment Logistics Module Pressurized Section from its shipping container and moves it toward a scale for weight and center-of-gravity measurements. The module will then be moved to a work stand. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007. Photo credit: NASA/George Shelton KSC-07pd0771

In the Spacecraft Assembly and Encapsulation Facility 2, workers remove the protective sheet from around the 2001 Mars Odyssey spacecraft. Odyssey, which arrived from Denver, Colo., Jan. 4, will undergo final assembly and checkout in the SAEF-2. That includes installation of two of the three science instruments, integration of the three-panel solar array, and a spacecraft functional test. Launch aboard a Boeing Delta II launch vehicle from Pad A, Complex 17, CCAFS, is planned for April 7, 2001 the first day of a 21-day planetary window. The spacecraft will arrive at Mars on Oct. 20, 2001, for insertion into an initial elliptical capture orbit. Its final operational altitude will be a 250-mile-high, Sun-synchronous polar orbit. Mars Odyssey will spend two years mapping the planet’s surface and measuring its environment KSC-01pp0068

SMAP Spacecraft Rotate & Placed on Fixture

code Related

At Astrotech, Titusville, Fla., the GOES-L weather satellite undergoes encapsulation in the first half of the fairing before its transfer to Launch Pad 36A, Cape Canaveral Air Station. At right is the second half of the fairing. The mounted equipment on top of the satellite is a telemetry and command antenna. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The GOES is scheduled for launch aboard a Lockheed Martin Atlas II rocket later in May KSC-99pp0490

Workers at Astrotech, Titusville, Fla., prepare the GOES-L weather satellite for encapsulation in the fairing (left and right) before its transfer to Launch Pad 36A, Cape Canaveral Air Station. The mounted equipment on top of the satellite is a telemetry and command antenna. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The GOES is scheduled for launch aboard a Lockheed Martin Atlas II rocket later in May KSC-99pp0491

At Astrotech, Titusville, Fla., the GOES-L weather satellite sits on a workstand, ready to be encapsulated for its transfer to Launch Pad 36A, Cape Canaveral Air Station. GOES is scheduled for launch aboard a Lockheed Martin Atlas II rocket later in May. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space KSC-99pp0488

At Astrotech, Titusville, Fla., the fully encapsulated GOES-L weather satellite is ready for transfer to Launch Pad 36A, Cape Canaveral Air Station. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The GOES is scheduled for launch aboard a Lockheed Martin Atlas II rocket later in May KSC-99pp0493

After being transported from Astrotech, in Titusville, Fla., the encapsulated GOES-L weather satellite arrives at Launch Pad 36A, Cape Canaveral Air Station, to be mated to a Lockheed Martin Atlas II rocket. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The GOES is scheduled for launch later this month KSC-99pp0497

Workers at Astrotech, Titusville, Fla., move the second half of the fairing to finish encapsulating the GOES-L weather satellite before its transfer to Launch Pad 36A, Cape Canaveral Air Station. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The GOES is scheduled for launch aboard a Lockheed Martin Atlas II rocket later in May KSC-99pp0492

At Launch Pad 36A, Cape Canaveral Air Station, an encapsulated GOES-L weather satellite (top center) is prepared for mating to the a Lockheed Martin Atlas II rocket below it. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The GOES is scheduled for launch later this month KSC-99pp0500

At Astrotech, in Titusville, Fla., the GOES-L satellite sits ready for a media showing. The GOES-L is due to be launched May 15 from Launch Pad 36A aboard an Atlas IIA rocket. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites KSC-99pp0395

The GOES-L weather satellite, aboard the trailer, is moved into a building at Astrotech in Titusville for testing of the imaging system, instrumentation, communications and power systems. The satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in March or April, is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-98pc1874

The GOES-L weather satellite sits on a workstand at Astrotech, Titusville, Fla., ready to be encapsulated for its transfer to Launch Pad 36A, Cape Canaveral Air Station. On the left side is the folded, two-panel solar array; on the adjoining side is a white box, which is the UHF antenna. Above the box is the S-band transmit antenna and receive antenna. Between them protrudes a search and rescue antenna. At right are the sounder (top) and imager (bottom). The mounted equipment on top of the unit is a telemetry and command antenna. The GOES is scheduled for launch aboard a Lockheed Martin Atlas II rocket later in May. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space KSC-99pp0489

description

Summary

The GOES-L weather satellite sits on a workstand at Astrotech, Titusville, Fla., ready to be encapsulated for its transfer to Launch Pad 36A, Cape Canaveral Air Station. On the left side is the folded, two-panel solar array; on the adjoining side is a white box, which is the UHF antenna. Above the box is the S-band transmit antenna and receive antenna. Between them protrudes a search and rescue antenna. At right are the sounder (top) and imager (bottom). The mounted equipment on top of the unit is a telemetry and command antenna. The GOES is scheduled for launch aboard a Lockheed Martin Atlas II rocket later in May. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. After it is launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space

Nothing Found.

label_outline

Tags

kennedy space center goes l satellite goes l weather satellite workstand astrotech titusville transfer launch pad station cape canaveral air station two panel array box uhf antenna uhf antenna s band protrudes search rescue rescue antenna imager bottom equipment telemetry command command antenna martin atlas rocket martin atlas ii rocket geostationary geostationary weather satellites noaa spacecraft pictures checkout backup capabilities backup capabilities orbit space ksc cape canaveral national oceanic and atmospheric administration search and rescue operations nasa
date_range

Date

04/05/1999
place

Location

Cape Canaveral, FL
create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Protrudes, Goes L Weather Satellite, Martin Atlas Ii Rocket

The Inertial Upper Stage (IUS) booster is lowered toward a workstand in Kennedy Space Center's Vertical Processing Facility. The IUS will be mated with the Chandra X-ray Observatory and then undergo testing to validate the IUS/Chandra connections and check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93 KSC-99pp0619

STS100-395-015 - STS-100 - MS Parazynski raises the UHF antenna on Destiny during the first EVA of STS-100

At Launch Pad 36A on the Cape Canaveral Air Station, the first stage of a Lockheed Martin Atlas II rocket is lifted into an upright position. The rocket will be used to launch the Geostationary Operational Environmental Satellite-L (GOES-L). GOES-L is the latest in the current series of advanced geostationary weather satellites in service. Once in orbit, it will become GOES-11 and function as an on-orbit spare to be activated when one of the operational satellites needs to be replaced. Launch is scheduled for Saturday, May 15 at the opening of a launch window which extends from 2:23 to 4:41 a.m. EDT KSC-99pp0423

The 16-inch gun turret on the aft section of the battleship USS IOWA (BB 61) during its reactivation at Ingalls Shipbuilding Corp. The circular structure to the left is the base for SKY-4, the aft 5-inch gun director which serves as a backup for the 16-inch main battery gun director

STS110-714-042 - STS-110 - Distant views of the zenith side of the ISS taken during STS-110's flyaround

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Discovery touches down in darkness on Runway 15 of the KSC Shuttle Landing Facility, bringing to a close the 10-day STS-82 mission to service the Hubble Space Telescope (HST). Main gear touchdown was at 3:32:26 a.m. EST on February 21, 1997. It was the ninth nighttime landing in the history of the Shuttle program and the 35th landing at KSC. The first landing opportunity at KSC was waved off because of low clouds in the area. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. Crew members are Mission Commander Kenneth D. Bowersox, Pilot Scott J. "Doc" Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. "Joe" Tanner and Steven A. Hawley. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997 KSC-97pc352

STS100-711-034 - STS-100 - Earth observation image taken during STS-100.

S132E007959 - STS-132 - Backup Space-to-Ground Antenna on EVA-1 during Joint Operations

At launch pad 36-A, Cape Canaveral Air Force Station, workers check over the second stage of an Atlas II/Centaur rocket before it is lifted up the gantry (behind it) for mating with the first stage. Atlas II is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing KSC00pp0424

S135E008622 - STS-135 - Survey View of UHF Antenna on the P1 Truss

JSC2014-E-042045 (6 Feb. 2014) --- The backup crew members for International Space Station Expedition 40 take a break in training with the prime crew for a crew portrait. From the left are Flight Engineer Terry Virts of NASA, Soyuz Commander Anton Shkaplerov of Russia's Federal Space Agency (Roscosmos) and Flight Engineer Samantha Cristoforetti of the European Space Agency. Photo credit: Gagarin Cosmonaut Training Center jsc2014e042045

STS110-714-028 - STS-110 - Distant views of the forward side of the ISS taken during STS-110's flyaround

Topics

kennedy space center goes l satellite goes l weather satellite workstand astrotech titusville transfer launch pad station cape canaveral air station two panel array box uhf antenna uhf antenna s band protrudes search rescue rescue antenna imager bottom equipment telemetry command command antenna martin atlas rocket martin atlas ii rocket geostationary geostationary weather satellites noaa spacecraft pictures checkout backup capabilities backup capabilities orbit space ksc cape canaveral national oceanic and atmospheric administration search and rescue operations nasa