visibility Similar

Microgravity, Space Shuttle Program, NASA

KENNEDY SPACE CENTER, Fla. -- Lights on Launch Pad 39A cast a warm glow over Space Shuttle Endeavour after rollback of the Rotating Service Structure. On the left, stretching past the solid rocket booster to the orbiter, is the Orbiter Access Arm with the White Room at the end. The White Room provides a controlled environment for entry into the orbiter. Endeavour is expected to lift off on mission STS-100 on April 19, carrying the Multi-Purpose Logistics Module Raffaello and the Canadian robotic arm, SSRMS, with a crew of seven to the International Space Station KSC-01pp0911

CAPE CANAVERAL, Fla. -- In Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, an overhead crane suspends shuttle Atlantis above the transfer aisle. The spacecraft then will be moved into a high bay where it will be lowered and attached to its external fuel tank and solid rocket boosters already on the mobile launcher platform. Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim are expected to launch in mid-July, taking with them the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing spacecraft and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Ken Thornsley KSC-2011-3804

The Space Shuttle Discovery and its seven-member STS-120 crew headed toward Earth-orbit and a scheduled linkup with the International Space Station (ISS). Liftoff from Kennedy Space Center's launch pad 39A occurred at 11:38:19 a.m. (EDT) on October 23, 2007. Onboard were astronauts Pam Melroy, commander; George Zamka, pilot; Scott Parazynski, Stephanie Wilson, Doug Wheelock, European Space Agency's (ESA) Paolo Nespoli and Daniel Tani, all mission specialists. Discovery linked up with the station for a joint mission of continued construction, The mission delivered the Italian-built U.S. Node 2, named Harmony. During the 14-day mission, the crew installed Harmony, and moved and deployed the P6 solar arrays to their permanent position. n/a

STS-131 - LAUNCH - Public domain NASA photogrpaph

STS-131 - LAUNCH - Public domain NASA photogrpaph

STS-41 Discovery, OV-103, lifts off from KSC Launch Complex (LC) Pad 39

KENNEDY SPACE CENTER, FLA. - Sitting on top of the mobile launcher platform, Space Shuttle Atlantis rolls out of the Vehicle Assembly Building to Launch Pad 39B via the crawler-transporter underneath. First motion was at 1:05 a.m. The slow speed of the crawler results in a 6-hour trek to the pad approximately 4 miles away. Atlantis' launch window begins Aug. 27 for an 11-day mission to the International Space Station. The STS-115 crew of six astronauts will continue construction of the station and install their cargo, the Port 3/4 truss segment with its two large solar arrays. Photo credit: NASA/Troy Cryder KSC-06pd1703

CAPE CANAVERAL, Fla. – The space shuttle Discovery heads out of the VAB to Launch Pad 39B. Discovery is set to leftoff on shuttle mission STS-41, carrying a five-member crew and the Ulysses solar explorer during a launch period extending from Oct. 5 through Oct. 23, 1990. Photo credit: NASA KSC-90PC-1339

code Related

Preliminary reports indicate the Space Shuttle's first super lightweight external tank (SLWT) is in excellent condition following the completion of a tanking test yesterday during a simulated launch countdown at Launch Pad 39A. The pad's Rotating Service Structure will be closed around Discovery later today as preparations for the STS-91 launch on June 2 continue. The primary objectives of the test were to evaluate the strut loads between the tank and the solid rocket boosters and to verify the integrity of the new components of the tank. The SLWT is 7,500 pounds lighter than its predecessors and was developed to increase the Shuttle payload capacity on International Space Station assembly flights. Major changes to the lighter tank include the use of new materials and a revised internal design. The new liquid oxygen and liquid hydrogen tanks are constructed of aluminum lithium a lighter, stronger material than the metal alloy currently used. The redesigned walls of the liquid hydrogen tank were machined to provide additional strength and stability, as well. The STS-91 mission will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, and the conclusion of Phase I of the joint U.S.-Russian International Space Station Program KSC-98pc620

The STS-95 Space Shuttle Discovery sits on the Mobile Launch Platform, still atop the crawler transporter, at Launch Pad 39B. To its left is the Fixed Service Structure that provides access to the orbiter and the Rotating Service Structure. To its right is the elevated water tank, with a capacity of 300,000 gallons. Part of the sound suppression water system, the tank stands 290 feet high on the northeast side of the pad. Water from the tank is released just before ignition of the orbiter's three main engines and twin solid rocket boosters. The entire system reduces the acoustical levels within the orbiter's payload bay to an acceptable 142 decibels. Beyond the orbiter is seen the Atlantic Ocean. While at the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process KSC-98pc1110

With the Rotating Service Structure rolled back, at left, the Space Shuttle Atlantis undergoes final prelaunch preparations at Launch Pad 39A for the STS-86 mission. One of the final steps will be to load the external tank with approximately 500,000 gallons of liquid hydrogen and liquid oxygen for fueling the orbiter’s three main engines. STS-86 is slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. Liftoff is targeted for Sept. 25 at 10:34 p.m. EDT during a preferred launch window which lasts six minutes and 45 seconds. Seven crew members will lift off for the scheduled 10-day flight. One of those crew members, David A. Wolf, will transfer to the Mir for an approximate four-month stay. He will replace U.S. astronaut C. Michael Foale, who will return to Earth with the remainder of the STS86 crew. Foale has been on the Russian space station since mid-May KSC-97PC1416

With the Rotating Service Structure rolled back, at left, the Space Shuttle Atlantis undergoes final prelaunch preparations at Launch Pad 39A for the STS-86 mission. One of the final steps will be to load the external tank with approximately 500,000 gallons of liquid hydrogen and liquid oxygen for fueling the orbiter’s three main engines. STS-86 is slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. Liftoff is targeted for Sept. 25 at 10:34 p.m. EDT during a preferred launch window which lasts six minutes and 45 seconds. Seven crew members will lift off for the scheduled 10-day flight. One of those crew members, David A. Wolf, will transfer to the Mir for an approximate four-month stay. He will replace U.S. astronaut C. Michael Foale, who will return to Earth with the remainder of the STS86 crew. Foale has been on the Russian space station since mid-May KSC-97PC1418

A SPACEHAB Single Module (top) and the Alpha Magnetic Spectrometer (AMS) experiment are secure in Discovery's payload bay shortly before the payload bay doors are closed for the flight of STS-91 at Launch Pad 39A. Launch is planned for June 2 with a window opening around 6:10 p.m. EDT. The single SPACEHAB module houses experiments to be performed by the astronauts and serves as a cargo carrier for items to be transferred to and from the Russian Space Station Mir. The AMS experiment is the first of a new generation of space-based experiments which will use particles, instead of light, to study the Universe and will search for both antimatter and "dark matter," as well as measure normal matter cosmic and gamma rays. STS-91 will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir KSC-98pc637

The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Pilot Dominic Gorie, STS-91 Commander Charles Precourt, Boeing SPACEHAB Payload Operations Senior Engineer Jim Behling, Boeing SPACEHAB Program Senior Engineer Shawn Hicks, Boeing SPACEHAB Program Specialist in Engineering Ed Saenger, STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency, Boeing SPACEHAB Program Manager in Engineering Brad Reid, and Russian Interpreter Olga Belozerova KSC-98pc421

STS-91 Mission Commander Charles Precourt arrives at Kennedy Space Center's Shuttle Landing Facility aboard a T-38 jet as part of final preparations for launch. STS-91 is scheduled to be launched on June 2 on Space Shuttle Discovery with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew also includes Pilot Dominic Gorie and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir KSC-98pc663

The Space Shuttle's first super lightweight external tank is on its way to Kennedy Space Center's Vehicle Assembly Building for processing. The tank, which is scheduled for flight on STS-91 in late May, arrived Feb. 3 in Port Canaveral, where it remained until Feb. 6 due to high winds. The improved tank is 7,500 pounds lighter than its predecessors and was developed to increase the Shuttle payload capacity on International Space Station assembly flights. Major changes to the lighter tank include the use of new materials and a revised internal design. The new liquid oxygen and liquid hydrogen tanks are constructed of aluminum lithium a lighter, stronger material than the metal alloy currently used. The redesigned walls of the liquid hydrogen tank were machined to provide additional strength and stability as well KSC-pa-et-2

The Space Shuttle's first super lightweight external tank is on its way to Kennedy Space Center's Vehicle Assembly Building for processing. The tank, which is scheduled for flight on STS-91 in late May, arrived Feb. 3 in Port Canaveral, where it remained until Feb. 6 due to high winds. The improved tank is 7,500 pounds lighter than its predecessors and was developed to increase the Shuttle payload capacity on International Space Station assembly flights. Major changes to the lighter tank include the use of new materials and a revised internal design. The new liquid oxygen and liquid hydrogen tanks are constructed of aluminum lithium a lighter, stronger material than the metal alloy currently used. The redesigned walls of the liquid hydrogen tank were machined to provide additional strength and stability as well KSC-pa-et-1

Preliminary reports indicate the Space Shuttle's first super lightweight external tank (SLWT) is in excellent condition following the completion of a tanking test yesterday during a simulated launch countdown at Launch Pad 39A. The pad's Rotating Service Structure will be closed around Discovery later today as preparations for the STS-91 launch on June 2 continue. The primary objectives of the test were to evaluate the strut loads between the tank and the solid rocket boosters and to verify the integrity of the new components of the tank. The SLWT is 7,500 pounds lighter than its predecessors and was developed to increase the Shuttle payload capacity on International Space Station assembly flights. Major changes to the lighter tank include the use of new materials and a revised internal design. The new liquid oxygen and liquid hydrogen tanks are constructed of aluminum lithium a lighter, stronger material than the metal alloy currently used. The redesigned walls of the liquid hydrogen tank were machined to provide additional strength and stability, as well. The STS-91 mission will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, and the conclusion of Phase I of the joint U.S.-Russian International Space Station Program KSC-98pc621

description

Summary

Preliminary reports indicate the Space Shuttle's first super lightweight external tank (SLWT) is in excellent condition following the completion of a tanking test yesterday during a simulated launch countdown at Launch Pad 39A. The pad's Rotating Service Structure will be closed around Discovery later today as preparations for the STS-91 launch on June 2 continue. The primary objectives of the test were to evaluate the strut loads between the tank and the solid rocket boosters and to verify the integrity of the new components of the tank. The SLWT is 7,500 pounds lighter than its predecessors and was developed to increase the Shuttle payload capacity on International Space Station assembly flights. Major changes to the lighter tank include the use of new materials and a revised internal design. The new liquid oxygen and liquid hydrogen tanks are constructed of aluminum lithium a lighter, stronger material than the metal alloy currently used. The redesigned walls of the liquid hydrogen tank were machined to provide additional strength and stability, as well. The STS-91 mission will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, and the conclusion of Phase I of the joint U.S.-Russian International Space Station Program

The Space Shuttle program was the United States government's manned launch vehicle program from 1981 to 2011, administered by NASA and officially beginning in 1972. The Space Shuttle system—composed of an orbiter launched with two reusable solid rocket boosters and a disposable external fuel tank— carried up to eight astronauts and up to 50,000 lb (23,000 kg) of payload into low Earth orbit (LEO). When its mission was complete, the orbiter would re-enter the Earth's atmosphere and lands as a glider. Although the concept had been explored since the late 1960s, the program formally commenced in 1972 and was the focus of NASA's manned operations after the final Apollo and Skylab flights in the mid-1970s. It started with the launch of the first shuttle Columbia on April 12, 1981, on STS-1. and finished with its last mission, STS-135 flown by Atlantis, in July 2011.

label_outline

Tags

kennedy space center preliminary reports preliminary reports space shuttle tank slwt completion yesterday test yesterday countdown launch pad service structure discovery sts objectives strut loads strut loads rocket boosters rocket boosters integrity components predecessors increase payload capacity shuttle payload capacity international space station flights major changes major changes materials oxygen hydrogen hydrogen tanks aluminum lithium aluminum lithium alloy walls strength stability russian mir russian space station mir first mir conclusion phase phase i program space shuttle on launch pad international space station program ksc 98 pc 621 sts 91 mission international space station program test sts 91 shuttle nasa
date_range

Date

19/05/1998
collections

in collections

Space Shuttle Program

place

Location

Kennedy Space Center / Cape Canaveral Air Force Station Fire Station 2 ,  28.52650, -80.67093
create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Slwt, Major Changes, Aluminum Lithium

Topics

kennedy space center preliminary reports preliminary reports space shuttle tank slwt completion yesterday test yesterday countdown launch pad service structure discovery sts objectives strut loads strut loads rocket boosters rocket boosters integrity components predecessors increase payload capacity shuttle payload capacity international space station flights major changes major changes materials oxygen hydrogen hydrogen tanks aluminum lithium aluminum lithium alloy walls strength stability russian mir russian space station mir first mir conclusion phase phase i program space shuttle on launch pad international space station program ksc 98 pc 621 sts 91 mission international space station program test sts 91 shuttle nasa