visibility Similar

code Related

KENNEDY SPACE CENTER, FLA. -- Inside the gantry on Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander waits to be lowered into the white room. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998 KSC-98pc1831

KENNEDY SPACE CENTER, FLA. -- The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to the top of the gantry on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998 KSC-98pc1829

KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, a solid rocket booster hangs in place between two other rocket boosters waiting to be mated with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998 KSC-98pc1825

KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, a solid rocket booster waits for mating with the Delta II rocket (in background) carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998 KSC-98pc1822

KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is prepared for lowering toward the rocket below. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998 KSC-98pc1832

KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, workers monitor the solid rocket booster before its being lifted to mate with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998 KSC-98pc1821

KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, a solid rocket booster is raised to a vertical position for mating with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998 KSC-98pc1824

KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, a solid rocket booster is raised to a vertical position for mating with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998 KSC-98pc1823

KENNEDY SPACE CENTER, FLA. -- The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to a vertical position on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998 KSC-98pc1828

KENNEDY SPACE CENTER, FLA. -- Inside the gantry on Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander waits to be lowered into the white room. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998 KSC-98pc1830

description

Summary

KENNEDY SPACE CENTER, FLA. -- Inside the gantry on Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander waits to be lowered into the white room. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998

Nothing Found.

label_outline

Tags

kennedy space center gantry station cape canaveral air station stages delta rocket delta ii rocket mars polar lander mars polar lander room spacecraft touch martian surface martian surface northern most boundary northern most boundary pole order study water cycle water cycle scientists climate change climate change resources things frost dust vapor water vapor condensates atmosphere martian atmosphere second spacecraft pair orbiter mars climate orbiter launch complex cape canaveral launch pad nasa
date_range

Date

02/12/1998
place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Second Spacecraft, Mars Climate Orbiter, Northern Most

Dams under construction. Watts Bar Dam, shown here under construction, has a semi-outdoors type powerhouse with an enormous gantry crane (to the right of the picture) for installation and removal of units. The project is further distinguished by a control building which is entirely removed from the hydro plant, being located some 120 feet higher on top of a steep cliff and with direct connection to the switchyard behind. The windowless left wing of the control building houses the control room; the tower-like structure in the back accomodates air conditioning, restrooms, etc. The glass wall, upper level, contains the reception room with a broad semi-circular overlook terrace, the story below the terrace devoted to offices

STAFF Sergeant (SSGT) Larry Alexander, Detachment 1, 17th Weather Squadron, uses a hygrometer to measure atmospheric water vapor content during Exercise SHADOW HAWK'87, a phase of BRIGHT STAR'87. The US Central Command exercise represents a Joint Chiefs

A crane lowers a geodesic vapor recovery dome onto a bulk fuel tank. The dome is being placed on the tank as part of the Environmental Protection Agency's Compliance Assessment and Management Program

STS089-375-028 - STS-089 - RME 1331 - Shuttle Condensate Collection for ISS (SCCI)

NASA astronaut and Mir 24 crew member David Wolf, M.D., enjoys a moment with the media at the Skid Strip at Cape Canaveral Air Station on Feb. 1 moments before his departure for Johnson Space Center. Other STS-89 crew members surrounding Dr. Wolf include, left to right, Pilot Joe Edwards Jr.; Commander Terrence Wilcutt; and Mission Specialist Bonnie Dunbar, Ph.D. In the red shirt behind Edwards is JSC Director of Flight Crew Operations David Leestma. The STS-89 crew that brought Dr. Wolf back to Earth arrived at KSC aboard the orbiter Endeavour Jan. 31, concluding the eighth Shuttle-Mir docking mission. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded Dr. Wolf on Mir and is scheduled to remain on the Russian space station until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-pa-wolf-17

A crane is positioned near geodesic vapor recovery dome prior to placing the dome atop one of the bulk fuel tanks in the background. The domes are being used as part of the Environmental Protection Agency's Compliance Assessment and Management Program

Cape Canaveral Air Station, Launch Complex 17, Facility 28406, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

Puget Sound Naval Shipyard, Portal Gantry Crane No. 42, Pier 5, Farragut Avenue, Bremerton, Kitsap County, WA

Cape Canaveral Air Station, Launch Complex 17, Facility 36002, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

A black and white photo of a man in a costume, Arizona. Farm Security Administration photograph

Cape Canaveral Air Station, Launch Complex 17, Facility 28419, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

Pathfinder and Sojourner. NASA public domain image colelction.

Topics

kennedy space center gantry station cape canaveral air station stages delta rocket delta ii rocket mars polar lander mars polar lander room spacecraft touch martian surface martian surface northern most boundary northern most boundary pole order study water cycle water cycle scientists climate change climate change resources things frost dust vapor water vapor condensates atmosphere martian atmosphere second spacecraft pair orbiter mars climate orbiter launch complex cape canaveral launch pad nasa