visibility Similar

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center, an overhead crane is attached to the Multi-Use Lightweight Equipment, or MULE, carrier to moved the carrier to another stand in the high bay. The MULE is part of the payload for the fifth and final shuttle servicing mission to NASA's Hubble Space Telescope, STS-125. The MULE carrier will join the Flight Support System, the Super Lightweight Interchangeable Carrier and the Orbital Replacement Unit Carrier in the Payload Hazardous Servicing Facility where the Hubble payload is being prepared for launch. The Relative Navigation Sensors and the New Outer Blanket Layers will be on the MULE. The payload is scheduled to go to Launch Pad 39A in mid-September to be installed into Atlantis' payload bay. Atlantis is targeted to launch Oct. 8 at 1:34 a.m. EDT. Photo credit: NASA/Jack Pfaller KSC-08pd2307

KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, a technician from the Applied Physics Laboratory adjusts part of the blanket that it is being installed as a heat shield around the New Horizons spacecraft. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015. KSC-05pd2408

NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft

VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Interstellar Boundary Explorer, or IBEX, mission spacecraft rests securely on the mobile stand. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from the Pegasus XL rocket on Oct. 5. Photo credit: NASA KSC-08pd2414

Phoenix Mars Lander Spacecraft Heat Shield Installation

Dawn Spacecraft After Installation of High Gain Antenna

KENNEDY SPACE CENTER, FLA. -- Workers in the Space Station Processing Facility line up on the sides of the payload transport canister as an overhead crane moves the P6 integrated truss segment into position above it. After being placed in the canister, the truss will be transported to Launch Pad 39B and the payload changeout room. Then it will be moved into Space Shuttle Endeavour’s payload bay for mission STS-97. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The STS-97 launch is scheduled Nov. 30 at 10:06 p.m. EST KSC-00pp1689

KENNEDY SPACE CENTER, FLA. - In the Multi-Purpose Processing Facility, the SORCE satellite undergoes a solar array test. SORCE is equipped with four instruments that will measure variations in solar radiation much more accurately than anything now in use and observe some of the spectral properties of solar radiation for the first time. With data from NASA’s SORCE mission, researchers should be able to follow how the Sun affects our climate now and in the future. The SORCE project is managed by NASA’s Goddard Space Flight Center. The instruments on the SORCE spacecraft are built by the Laboratory for Atmospheric and Space Physics (LASP). Launch of SORCE aboard a Pegasus XL rocket is scheduled for mid-December 2002. Launch site is Cape Canaveral Air Force Station, Fla. KSC-02pd1671

CAPE CANAVERAL, Fla. – Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, engineers and technicians move the Mars Atmosphere and Volatile Evolution, or MAVEN, spacecraft into position on a tilt and rotation stand for further pre-flight processing. MAVEN is being prepared for its scheduled launch in November from Cape Canaveral Air Force Station, Fla. atop a United Launch Alliance Atlas V rocket. Positioned in an orbit above the Red Planet, MAVEN will study the upper atmosphere of Mars in unprecedented detail. For more information, visit: http://www.nasa.gov/mission_pages/maven/main/index.html Photo credit: NASA/ Charisse Nahser KSC-2013-3590

code Related

Flight mechanics from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., lower the Cassini spacecraft onto its launch vehicle adapter in KSC’s Payload Hazardous Servicing Facility. The adapter will later be mated to a Titan IV/Centaur expendable launch vehicle that will lift Cassini into space. Scheduled for launch in October, the Cassini mission, a joint US-European four-year orbital surveillance of Saturn's atmosphere and magnetosphere, its rings, and its moons, seeks insight into the origins and evolution of the early solar system. It will take seven years for the spacecraft to reach Saturn. JPL is managing the Cassini project for NASA KSC-97PC1110

Flight mechanics from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., secure the Cassini spacecraft to its launch vehicle adapter in KSC’s Payload Hazardous Servicing Facility. The adapter will later be mated to a Titan IV/Centaur expendable launch vehicle that will lift Cassini into space. The mechanic in the crane lift at right is assisting in exact positioning of the spacecraft for precise fitting. Scheduled for launch in October, the Cassini mission seeks insight into the origins and evolution of the early solar system. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA KSC-97PC1111

Flight mechanics from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., inspect their work after mating the Cassini spacecraft to its launch vehicle adapter in KSC’s Payload Hazardous Servicing Facility. The adapter will later be mated to a Titan IV/Centaur expendable launch vehicle that will lift Cassini into space. Scheduled for launch in October, the Cassini mission, a joint US-European four-year orbital surveillance of Saturn's atmosphere and magnetosphere, its rings, and its moons, seeks insight into the origins and evolution of the early solar system. It will take seven years for the spacecraft to reach Saturn. JPL is managing the Cassini project for NASA KSC-97PC1109

Flight mechanics from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., work on the lifting fixture that picks up the Cassini spacecraft in KSC’s Payload Hazardous Servicing Facility. The orbiter alone weighs about 4,750 pounds (2,150 kilograms). At launch, the combined orbiter, Huygens probe, launch vehicle adapter, and propellants will weigh about 12,346 pounds (5,600 kilograms). Scheduled for launch in October, the Cassini mission, a joint US-European four-year orbital surveillance of Saturn's atmosphere and magnetosphere, its rings, and its moons, seeks insight into the origins and evolution of the early solar system. JPL is managing the Cassini project for NASA KSC-97PC1108

Jet Propulsion Laboratory (JPL) technicians reposition and level the Cassini orbiter in the Payload Hazardous Servicing Facility at KSC in July after stacking the craft’s upper equipment module on the propulsion module. A four-year, close-up study of the Saturnian system, the Cassini mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA KSC-97PC1019

Jet Propulsion Laboratory (JPL) technicians reposition and level the Cassini orbiter in the Payload Hazardous Servicing Facility at KSC in July after stacking the craft’s upper equipment module on the propulsion module. A four-year, close-up study of the Saturnian system, the Cassini mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA KSC-97PC1020

Jet Propulsion Laboratory (JPL) technicians clean and prepare the upper equipment module for mating with the propulsion module subsystem of the Cassini orbiter in the Payload Hazardous Servicing Facility at KSC in July. A four- year, close-up study of the Saturnian system, the Cassini mission is scheduled for launch from Cape Canaveral Air Station in October 1997. It will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA KSC-97PC1018

Scientists from the Cassini project at the Jet Propulsion Laboratory and the European Space Agency talk to photojournalists, news reporters, writers, television broadcasters, and cameramen in the Payload Hazardous Servicing Facility (PHSF) during the Cassini press showing. Cassini will launch on Oct. 6, 1997, on an Air Force Titan IV/Centaur launch vehicle and will arrive at Saturn in July 2004 to begin an international scientific mission to study the planet and its systems. Cassini is managed for NASA by the Jet Propulsion Laboratory at Pasadena, Calif KSC-97PC1279

Technicians from the Jet Propulsion Laboratory (JPL) lower the upper equipment module over a propellant tank in the Payload Hazardous Servicing Facility at KSC in July prior to installation on the Cassini orbiter. A four-year, close-up study of the Saturnian system, the Cassini mission is scheduled for launch from Cape Canaveral Air Station in October 1997. The propellant tank will assist with guidance of the orbiter and power during the spacecraft’s voyage and in-orbit periods. It will take seven years for the spacecraft to reach Saturn. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA KSC-97PC1016

Flight mechanics from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., lift the Cassini spacecraft along with its launch vehicle adapter in KSC’s Payload Hazardous Servicing Facility. The black conical-shaped adapter seen at the bottom of the spacecraft will later be mated to a Titan IV/Centaur expendable launch vehicle that will lift Cassini into space. Scheduled for launch in October, the Cassini mission seeks insight into the origins and evolution of the early solar system. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA KSC-97PC1112

description

Summary

Flight mechanics from NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif., lift the Cassini spacecraft along with its launch vehicle adapter in KSC’s Payload Hazardous Servicing Facility. The black conical-shaped adapter seen at the bottom of the spacecraft will later be mated to a Titan IV/Centaur expendable launch vehicle that will lift Cassini into space. Scheduled for launch in October, the Cassini mission seeks insight into the origins and evolution of the early solar system. Scientific instruments carried aboard the spacecraft will study Saturn’s atmosphere, magnetic field, rings, and several moons. JPL is managing the Cassini project for NASA

label_outline

Tags

kennedy space center flight mechanics flight mechanics jet propulsion laboratory nasa jet propulsion laboratory jpl pasadena cassini spacecraft cassini spacecraft vehicle adapter vehicle adapter payload ksc payload bottom titan centaur space cassini mission insight origins evolution system scientific instruments scientific instruments study saturn atmosphere study saturn atmosphere field rings moons project cassini project nasa ksc california satellite nasa
date_range

Date

22/07/1997
place

Location

Kennedy Space Center / Cape Canaveral Air Force Station Fire Station 2 ,  28.52650, -80.67093
create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Study Saturn Atmosphere, Flight Mechanics, Ksc Payload

US COAST GUARD Flight Mechanics

US COAST GUARD Flight Mechanics

A view of the inside of a large building Reichstag berlin government building.

A view of the inside of a large building Reichstag berlin government building.

AS15-88-11964 - Apollo 15 - Apollo 15 Mission image - Scientific Instrument Module (SIM) bay on the Commander Service Module (CSM)

Workers prepare to move the shipping container with the Cassini orbiter inside the Payload Hazardous Servicing Facility (PHSF) for prelaunch processing, testing and integration. The /1997/66-97.htm">orbiter arrived</a> at KSC’s Shuttle Landing Facility in a U.S. Air Force C-17 air cargo plane from Edwards Air Force Base, California. The orbiter and the Huygens probe already being processed at KSC are the two primary components of the Cassini spacecraft, which will be launched on a Titan IVB/Centaur expendable launch vehicle from Cape Canaveral Air Station. Cassini will explore Saturn, its rings and moons for four years. The Huygens probe, designed and developed for the European Space Agency (ESA), will be deployed from the orbiter to study the clouds, atmosphere and surface of Saturn’s largest moon, Titan. The orbiter was designed and assembled at NASA’s Jet Propulsion Laboratory in California. Following postflight inspections, integration of the 12 science instruments not already installed on the orbiter will be completed. Then, the parabolic high-gain antenna and the propulsion module will be mated to the orbiter, followed by the Huygens probe, which will complete spacecraft integration. The Cassini mission is targeted for an Oct. 6 launch to begin its 6.7-year journey to the Saturnian system. Arrival at the planet is expected to occur around July 1, 2004 KSC-97pc682

VANDENBERG AFB, Calif.-- Technicians use a crane to move NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA KSC-2012-6518

AS15-88-11969 - Apollo 15 - Apollo 15 Mission image - Scientific Instrument Module (SIM) bay on the Commander Service Module (CSM)

KENNEDY SPACE CENTER, FLA. - A research team member aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin lifts some of the project's equipment from the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.

VANDENBERG AIR FORCE BASE, Calif. -- The first half of the fairing is moved into place around the NOAA-N Prime spacecraft in the launch service tower on Space Launch Complex 2 at Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N that was launched on May 20, 2005. Launch of NOAA-N Prime aboard a Delta II rocket is scheduled for Feb. 4. Photo credit: NASA KSC-2009-1411

CAPE CANAVERAL, Fla. – In the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center, crew members with the STS-125 mission get a close look at some of the equipment associated with their mission to service NASA’s Hubble Space Telescope. From right, Mission Specialists Andrew Feustel and Mike Massimino look at the Fine Guidance Sensor inside the Fine Guidance Sensor Scientific Instrument Protective Enclosure, or FSIPE. The STS-125 crew is taking part in a crew equipment interface test, which provides experience handling tools, equipment and hardware they will use on their mission. Space shuttle Atlantis is targeted to launch on the STS-125 mission Oct. 10. Photo credit: NASA/Kim Shiflett KSC-08pd2563

VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, technicians follow the movement of NASA's Interstellar Boundary Explorer, or IBEX, mission spacecraft toward the mobile stand in the foreground. The IBEX satellite will make the first map of the boundary between the Solar System and interstellar space. IBEX is the first mission designed to detect the edge of the Solar System. As the solar wind from the sun flows out beyond Pluto, it collides with the material between the stars, forming a shock front. IBEX contains two neutral atom imagers designed to detect particles from the termination shock at the boundary between the Solar System and interstellar space. IBEX also will study galactic cosmic rays, energetic particles from beyond the Solar System that pose a health and safety hazard for humans exploring beyond Earth orbit. IBEX will make these observations from a highly elliptical orbit that takes it beyond the interference of the Earth's magnetosphere. IBEX is targeted for launch from the Pegasus XL rocket on Oct. 5. Photo credit: NASA KSC-08pd2410

Topics

kennedy space center flight mechanics flight mechanics jet propulsion laboratory nasa jet propulsion laboratory jpl pasadena cassini spacecraft cassini spacecraft vehicle adapter vehicle adapter payload ksc payload bottom titan centaur space cassini mission insight origins evolution system scientific instruments scientific instruments study saturn atmosphere study saturn atmosphere field rings moons project cassini project nasa ksc california satellite nasa