visibility Similar

code Related

CAPE CANAVERAL, Fla. – During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. No one was injured and the resulting fire was extinguished by Kennedy fire personnel. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA KSC-2012-4345

CAPE CANAVERAL, Fla. – During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA KSC-2012-4344

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander’s engine has completed its firing during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper KSC-2013-4295

CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander was conducted at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Smoke filled the air as the engine fired and the Morpheus lander launched from the ground over a flame trench. During the 54-second test, it ascended approximately 50 feet, and hovered for about 15 seconds. The lander then flew forward and landed on its pad about 23 feet from the launch point. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett KSC-2013-4329

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper KSC-2013-4293

CAPE CANAVERAL, Fla. – The first free flight of the Project Morpheus prototype lander was conducted at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Smoke filled the air as the engine fired and the Morpheus lander launched from the ground over a flame trench. During the 54-second test, it ascended approximately 50 feet, and hovered for about 15 seconds. The lander then flew forward and landed on its pad about 23 feet from the launch point. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to asteroids and other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett KSC-2013-4327

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper KSC-2013-4290

CAPE CANAVERAL, Fla. -- A technician prepares the Project Morpheus prototype lander for a second free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. Project Morpheus integrates NASA’s automated landing and hazard avoidance technology, or ALHAT, with an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis KSC-2013-4370

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander’s engine begins to fire during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander is lifted 20 feet by crane, and will ascend another 10 feet, maneuver backwards 10 feet, and then fly forward and descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper KSC-2013-4286

CAPE CANAVERAL, Fla. – During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. No one was injured and the resulting fire was extinguished by Kennedy fire personnel. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA KSC-2012-4346

description

Summary

CAPE CANAVERAL, Fla. – During a free-flight test of the Project Morpheus vehicle at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida, the vehicle lifted off the ground and then experienced a hardware component failure, which prevented it from maintaining stable flight. No one was injured and the resulting fire was extinguished by Kennedy fire personnel. Engineers are looking into the test data and the agency will release information as it becomes available. Failures such as these were anticipated prior to the test, and are part of the development process for any complex spaceflight hardware. Testing of the prototype lander had been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free-flight test at Kennedy Space Center. Morpheus was manufactured and assembled at JSC and Armadillo Aerospace. Morpheus is large enough to carry 1,100 pounds of cargo to the moon – for example, a humanoid robot, a small rover, or a small laboratory to convert moon dust into oxygen. The primary focus of the test is to demonstrate an integrated propulsion and guidance, navigation and control system that can fly a lunar descent profile to exercise the Autonomous Landing and Hazard Avoidance Technology, or ALHAT, safe landing sensors and closed-loop flight control. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA

The Space Shuttle program was the United States government's manned launch vehicle program from 1981 to 2011, administered by NASA and officially beginning in 1972. The Space Shuttle system—composed of an orbiter launched with two reusable solid rocket boosters and a disposable external fuel tank— carried up to eight astronauts and up to 50,000 lb (23,000 kg) of payload into low Earth orbit (LEO). When its mission was complete, the orbiter would re-enter the Earth's atmosphere and lands as a glider. Although the concept had been explored since the late 1960s, the program formally commenced in 1972 and was the focus of NASA's manned operations after the final Apollo and Skylab flights in the mid-1970s. It started with the launch of the first shuttle Columbia on April 12, 1981, on STS-1. and finished with its last mission, STS-135 flown by Atlantis, in July 2011.

label_outline

Tags

morpheus ground systems slf test kennedy space center cape canaveral free flight free flight test project morpheus vehicle project morpheus vehicle nasa kennedy space center ground hardware component failure hardware component failure flight fire personnel kennedy fire personnel engineers test data release release information failures were development process development process spaceflight spaceflight hardware prototype lander prototype lander johnson nasa johnson space center houston preparation first free flight test armadillo aerospace armadillo aerospace cargo moon example humanoid robot humanoid robot rover laboratory dust moon dust oxygen focus propulsion guidance navigation control system control system descent profile descent profile exercise autonomous hazard avoidance technology hazard avoidance technology alhat sensors closed loop closed loop flight control project morpheus morpheuslander nasa ksc space shuttle test flight high resolution nasa
date_range

Date

09/08/2012
collections

in collections

Space Shuttle Program

place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Humanoid Robot, Moon Dust, Closed Loop

Armadillo variegatus - - Print - Iconographia Zoologica - Special Collections University of Amsterdam - UBAINV0274 098 09 0016

Four Freedoms and Arsenal of Democracy posters. District of Columbia commissioner J. Russell Young, Colonel Lemuel Bolles, District of Columbia director of civilian defense, addressed the throng on hand to witness the unveiling in the nation's capitol of the 15 x 30 foot photomontages entitled "The Four Freedoms" and "The Arsenal of Democracy." These were designed for the (OEM) Office of Emergency Management by the eminent poster artist Jean Carlu and were first seen in New York. From there they came to Washington where they were displayed for a month beginning November 7, 1941. Then they were sent out for display in various other cities around the country. Seated on the platform is Colonel Lemuel Bolles, director of civilian defense for the nation's capitol

CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station in Florida, the United Launch Alliance, or ULA, Atlas V rocket carrying NASA’s twin Radiation Belt Storm Probes, or RBSP, rolled out of the ULA Vertical Integration Facility at Space Launch Complex 41 at 1:59 p.m. EDT heading to the launch pad. The Atlas V rocket had been rolled back to the facility on August 26 to ensure the launch vehicle and RBSP spacecraft were secured and protected from inclement weather caused by Tropical Storm Isaac. RBSP will explore changes in Earth's space environment caused by the sun -- known as "space weather" -- that can disable satellites, create power-grid failures and disrupt GPS service. The mission also will provide data on the fundamental radiation and particle acceleration processes throughout the universe. The launch is rescheduled for 4:05 a.m. EDT on Aug. 30, pending approval from the range. For more information on RBSP, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Kim Shiflett KSC-2012-4693

Sunday Morning, Group of gum vendors and news-boys, Pennsylvania Avenue and 7th Sts. The smallest ones were Sam Kipnis, 412 P St., N.W., Washington, D.C. David Stierman, 701 M St., N.W., Washington, D.C. (Is a truant on probation. Very defiant). Abram Furr, 1004 4 1/2 St., S.W., Washington, D.C., has a badge. The smallest of these were 11 years old. I saw some smaller but couldn't get the photo. Location: Washington (D.C.), District of Columbia.

The Navy in conjunction with the Spatial Integrated

Sunday morning at Lynchburg Cotton Mill (Virginia) Ed Tolley, the smallest, said 15 years old, but that is very doubtful. Others in these three photos, Lucien Tolley, Herbert Aultico, Henry Daly, John Crawley. (See my report for addresses.) Most of these boys could not spell own name. All claimed to be over 14, but their disputes showed "These's a reason." They get from three to four dollars a week and some pay board. One said, "I get all over $2.60." Some were surely under twelve. All work. Lindsey Witt has been working there 2 years. Dewey Anderson, three years. M[y]ron Cole, some time. Location: Lynchburg, Virginia.

[Assignment: 48-DPA-SOI_K_Luege] Secretary Dirk Kampthorne [and aides meeting at Main Interior] with delegation led by Mexico's Minister of Environment and Natural Resources, Jose Luis Luege. [Among Interior officials joining the Secretary were] Deputy Secretary P. Lynn Scarlett, Assistant Secretary for Water and Science Mark Limbaugh, Acting Assistant Secretary for Fish, Wildlife, and Parks Matt Hogan, along with Chris Kearney, Kathryn Washburn, and Karen Senhadji. [48-DPA-SOI_K_Luege_DSC_0015.JPG]

Shadowgraph of Finned Hemispherical model in free-flight show shock waves produced by blunt bodies (H. Julian Allen blunt nose theory) (Used in NASA/AMES publication 'Adventures in Research' A history of Ames Research Center 1940 - 1965 by Edwin P. Hartman - SP-4302) ARC-1958-A-23753

Production. Subchasers. These two men, cutting steel for the making of subchasers in a Southern shipyard, knew nothing of their new trade a short time ago. One was a farmer, the other an engineer on a fishing boat. Both were trained at the shipyard which they have since helped to earn the Navy "E"

[Assignment: 48-DPA-SOI_K_Luege] Secretary Dirk Kampthorne [and aides meeting at Main Interior] with delegation led by Mexico's Minister of Environment and Natural Resources, Jose Luis Luege. [Among Interior officials joining the Secretary were] Deputy Secretary P. Lynn Scarlett, Assistant Secretary for Water and Science Mark Limbaugh, Acting Assistant Secretary for Fish, Wildlife, and Parks Matt Hogan, along with Chris Kearney, Kathryn Washburn, and Karen Senhadji. [48-DPA-SOI_K_Luege_DSC_0006.JPG]

[Hurricane Katrina] New Orleans, LA, 3-31-06 -- London Ave Canal, U.S. Army Corps of Engineers mark "H" Piles to be cut off at a given height to support the interim gate structures. FEMA is helping Local governments repair the Levee system to Cat 4 specification by June 1st under its Public Assistance program to help prevent future levee failures. Marvin Nauman/FEMA photo

CAPE CANAVERAL, Fla. -- Vibration and laser testing is being conducted on Ares I-X segments at NASA's Kennedy Space Center. Team members ( from left), Jim Gaspar, with NASA's Langley Research Center, Paul Bartollota, with NASA's Glenn Research Center, Ralph Buehrle, with Langley, and Ryan Tuttle, with Aerospace Corporation, evaluate test data. Photo credit: NASA/Dimitri Gerondidakis KSC-08pd1192

Topics

morpheus ground systems slf test kennedy space center cape canaveral free flight free flight test project morpheus vehicle project morpheus vehicle nasa kennedy space center ground hardware component failure hardware component failure flight fire personnel kennedy fire personnel engineers test data release release information failures were development process development process spaceflight spaceflight hardware prototype lander prototype lander johnson nasa johnson space center houston preparation first free flight test armadillo aerospace armadillo aerospace cargo moon example humanoid robot humanoid robot rover laboratory dust moon dust oxygen focus propulsion guidance navigation control system control system descent profile descent profile exercise autonomous hazard avoidance technology hazard avoidance technology alhat sensors closed loop closed loop flight control project morpheus morpheuslander nasa ksc space shuttle test flight high resolution nasa