visibility Similar

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the S3/S4 integrated truss segment is on display for the media. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station. Photo credit: NASA/George Shelton KSC-07pd0277

KENNEDY SPACE CENTER, FLA. - Containers inside the Payload Hazardous Servicing Facility at KSC contain elements associated with the Mars Exploration Rovers Mission. The cruise stage, aeroshell and lander for MER-2 have been delivered for processing. Set to launch in 2003, the Mars Exploration Rover Mission will consist of two identical rovers designed to cover roughly 110 yards (100 meters) each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, 2003, and the second rover a window opening June 25, 2003. KSC-03pd0202

STS-117 Media Showcase. NASA public domain image. Kennedy space center.

STS-117 Media Showcase. NASA public domain image. Kennedy space center.

KENNEDY SPACE CENTER, FLA. - The next element to be added to the International Space Station, the Port 3/4 truss segment is being moved to a payload canister for installation in the orbiter Atlantis. The cylinders shown are the mast canisters for the solar arrays. The truss is slated for launch on mission STS-115 no earlier than Aug. 28. The truss is the next major addition to the 11-segment integrated truss structure that will eventually span more than 300 feet on the station. The P3/P4 truss, with its two large solar arrays, will provide one-fourth of the total power-generation capability of the completed station. The P3/P4 truss is expected to be loaded into Atlantis's cargo bay around the beginning of August. Photo credit: NASA/Troy Cryder KSC-06pd1631

KENNEDY SPACE CENTER, FLA. - Inside the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane carries the Columbus module toward a work stand. Columbus is the European Space Agency's research laboratory for the International Space Station. Once on the work stand , it will be prepared for delivery to the space station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann KSC-06pd0969

CAPE CANAVERAL, Fla. – In the Vehicle Assembly Building, technicians ensure the forward fifth segment simulator for the Ares I-X rocket is lowered in the proper position on the center segment. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Dimitri Gerondidakis KSC-2009-1969

KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, an overhead crane lifts the Japanese Experiment Module (JEM) pressure module out of the shipping canister to move it to a work stand. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.

ARES 1-X segment being moved from Building 50 to Building 333

KENNEDY SPACE CENTER, FLA. -- At a media showcase in the Space Station Processing Facility, reporters and photographers get a close look at the S3/S4 integrated truss segment. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station. Photo credit: NASA/George Shelton KSC-07pd0278

description

Summary

KENNEDY SPACE CENTER, FLA. -- At a media showcase in the Space Station Processing Facility, reporters and photographers get a close look at the S3/S4 integrated truss segment. The starboard 3/4 truss segment will launch aboard Space Shuttle Atlantis on mission STS-117, targeted for March 15. The element will be added to the 11-segment integrated truss structure, the station's backbone. The integrated truss structure eventually will span more than 300 feet. The S3/S4 truss has two large solar arrays and will provide one-fourth of the total power generation for the completed station. Photo credit: NASA/George Shelton

The Space Shuttle program was the United States government's manned launch vehicle program from 1981 to 2011, administered by NASA and officially beginning in 1972. The Space Shuttle system—composed of an orbiter launched with two reusable solid rocket boosters and a disposable external fuel tank— carried up to eight astronauts and up to 50,000 lb (23,000 kg) of payload into low Earth orbit (LEO). When its mission was complete, the orbiter would re-enter the Earth's atmosphere and lands as a glider. Although the concept had been explored since the late 1960s, the program formally commenced in 1972 and was the focus of NASA's manned operations after the final Apollo and Skylab flights in the mid-1970s. It started with the launch of the first shuttle Columbia on April 12, 1981, on STS-1. and finished with its last mission, STS-135 flown by Atlantis, in July 2011.

Space Shuttle Atlantis was a space shuttle that was operated by NASA as part of the Space Shuttle program. It was the fourth operational shuttle built, and the last one to be built before the program was retired in 2011. Atlantis was named after the first research vessel operated by the Woods Hole Oceanographic Institution, and it made its first flight in October 1985. Over the course of its career, Atlantis completed 33 missions and spent a total of 307 days in space. Its last mission was STS-135, which was the final mission of the Space Shuttle program. Atlantis is now on display at the Kennedy Space Center Visitor Complex in Florida. Space Shuttle Atlantis (Orbiter Vehicle Designation: OV-104) was one of the four first operational orbiters in the Space Shuttle fleet of NASA, the space agency of the United States. (The other two are Discovery and Endeavour.) Atlantis was the fourth operational shuttle built. Atlantis is named after a two-masted sailing ship that operated from 1930 to 1966 for the Woods Hole Oceanographic Institute. Atlantis performed well in 25 years of service, flying 33 missions.

Nothing Found.

label_outline

Tags

kennedy space center media showcase media showcase space station reporters close truss segment truss segment starboard atlantis space shuttle atlantis sts mission sts element truss structure backbone span arrays one fourth power generation power generation george shelton space shuttle energy generation high resolution nasa
date_range

Date

1960 - 1969
collections

in collections

Space Shuttle Program

Space Shuttle Atlantis

The Fourth Pperational Shuttle Built
place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore One Fourth, Reporters, Backbone

President Carter with Reporters -- Cabinet Room

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-124 crew get a close look at equipment on the Japanese Experiment Module, called Kibo, including the Remote Manipulator System, or RMS, two robotic arms that support operations on the outside of the Kibo. Crew members are at Kennedy for a crew equipment interface test that includes familiarization with tools and equipment that will be used on the mission. The STS-124 mission is the second of three flights that will launch components to complete the Japanese pressurized module, the Kibo laboratory. The mission will include two spacewalks to install the new lab and its remote manipulator system. The lab's logistics module, which will have been installed in a temporary location during STS-123, will be attached to the new lab. Photo credit: NASA/Kim Shiflett KSC-08pd0058

Coast Guard Petty Officer 1st Class David J. Schuhlein,

KENNEDY SPACE CENTER, FLA. -- James Stickley and Kristin Rumpf, both with United Space Alliance - Main Propulsion System Engineering, discuss procedures about welding the minute cracks on Endeavour's flow liners. Endeavour is scheduled to fly on mission STS-113 in November. The mission payload is the P1 Integrated Truss Structure, the first portside truss to go to the International Space Station, and will be attached to the central truss segment, S0, on the Station. Also additional cooling radiators will be delivered but will remain stowed until flight 12A.1. KSC-02pd1204

Workers in the Space Station Processing Facility look at the Passive Common Berthing Mechanism (PCBM) that will be attached to the Z1 integrated truss structure, a component of the International Space Station (ISS). The truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999 KSC-98pc1662

Crews work into the night to unload sections of a Bailey Bridge from a 709th Military Airlift Squadron (709th MAS) C-5B Galaxy aircraft at Chaklala air base. Two 709th MAS aircraft wre used to deliver the portable bridge, which will be passed on to an Afghan guerrilla . The Afghans will use the bridge to span the Konar River outside of Jalalabad, Afghanistan

A blue and white spinning clock in a store. Exposure shop watch, beauty fashion.

Secretary of the Air Force Verne Orr talks with reporters during the rollout ceremony for the first C-5B Galaxy aircraft. The ceremony is being held at the Lockheed Aircraft Corp. facility

Rear Admiral (RDML) (lower half) Robert L. Toney, commander, Naval Base, San Francisco, speaks with reporters during a press conference aboard the battleship USS MISSOURI (BB 63). The ship has just arrived in San Francisco to be recommissioning

KENNEDY SPACE CENTER, FLA. - The morning sky lightens behind Space Shuttle Atlantis while lights on the fixed service structure (FSS) still illuminate the orbiter on Launch Pad 39B. Atlantis was originally scheduled to launch at 12:29 p.m. EDT on this date, but a 24-hour scrub was called by mission managers due to a concern with Fuel Cell 1. Seen poised above the orange external tank is the vent hood (known as the "beanie cap") at the end of the gaseous oxygen vent arm. Vapors are created as the liquid oxygen in the external tank boil off. The hood vents the gaseous oxygen vapors away from the space shuttle vehicle. Extending from the FSS to Atlantis is the orbiter access arm with the White Room at the end. The White Room provides entry into the orbiter through the hatch. During the STS-115 mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned landing at KSC. Photo credit: NASA/Troy Cryder KSC-06pd2050

KENNEDY SPACE CENTER, FLA. - The rotating service structure (left) on Launch Pad 39B is rolled back to reveal Space Shuttle Atlantis. The RSS provides protected access to the orbiter for changeout and servicing of payloads at the pad and then is rolled away before liftoff. Atlantis is scheduled to launch Sept. 6 at 12:29 p.m. EDT on mission STS-115. During the mission, Atlantis' astronauts will deliver and install the 17.5-ton, bus-sized P3/P4 integrated truss segment on the station. The girder-like truss includes a set of giant solar arrays, batteries and associated electronics and will provide one-fourth of the total power-generation capability for the completed station. This mission is the 116th space shuttle flight, the 27th flight for orbiter Atlantis, and the 19th U.S. flight to the International Space Station. STS-115 is scheduled to last 11 days with a planned KSC landing at about 8:03 a.m. EDT on Sept. 17. Photo credit: NASA/George Shelton KSC-06pd2039

Protocol - Apollo-Soyuz Test Project (ASTP) Press Activity - JSC

Topics

kennedy space center media showcase media showcase space station reporters close truss segment truss segment starboard atlantis space shuttle atlantis sts mission sts element truss structure backbone span arrays one fourth power generation power generation george shelton space shuttle energy generation high resolution nasa