visibility Similar

VANDENBERG AIR FORCE BASE, Calif. --At Vandenberg Air Force Base in California, a crane raises one of three United Launch Alliance Delta II solid rocket motors on the pad at Space Launch Complex-2 West (SLC-2W). A second motor was installed earlier in the morning. Scheduled to launch in June, the Delta II rocket will carry NASA's Aquarius satellite into low Earth orbit. Aquarius' mission will be to provide monthly maps of global changes in sea surface salinity. By measuring ocean salinity from space, Aquarius will provide new insights into how the massive natural exchange of freshwater between the ocean, atmosphere and sea ice influences ocean circulation, weather and climate. Also going up with the satellite are optical and thermal cameras, a microwave radiometer and the SAC-D spacecraft, which were developed with the help of institutions in Italy, France, Canada and Argentina. Photo credit: VAFB/30th Space Wing KSC-2011-2197

CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the framework known as the "birdcage" lowers the Ares I-X simulator crew module-launch abort system, or CM-LAS, onto the simulator service module-service adapter stack. Ares I-X is the flight test for the Ares I. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 327-foot-tall, full-scale Ares I-X is targeted for August 2009. Photo credit: NASA/Kim Shiflett KSC-2009-3123

CAPE CANAVERAL, Fla. – Inside the Delta Operations Center near Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida, the second stage for the United Launch Alliance Delta IV Heavy for Exploration Flight Test-1, or EFT-1, is lifted high by crane for the move to a test cell. At the Horizontal Integration Facility, all three booster stages will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Frankie Martin KSC-2014-3158

VANDENBERG AIR FORCE BASE, Calif. – A half section of the 10-foot-diameter fairing for NASA's Soil Moisture Active Passive mission, or SMAP, is attached to a crane during preparations to hoist it into the environmental enclosure at the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. The fairing will protect the SMAP spacecraft from the heat and aerodynamic pressure generated during its ascent to orbit aboard a United Launch Alliance Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data will also be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for no earlier than November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin KSC-2014-3467

TRANSPORTATION AND ERECTION OF PAYLOAD SECTION OF CENTAUR STANDARD SHROUD AT B-3 TEST STAND AT NASA PLUM BROOK STATION SANDUSKY OHIO

Expedition 52 Rollout (NHQ201707260014)

KENNEDY SPACE CENTER, Fla. -- On Launch Complex 17A, Cape Canaveral Air Force Station, workers prepare to disconnect the first stage of a Boeing Delta II rocket from the transporter. The rocket will propel the Genesis spacecraft on a journey to capture samples of the ions and elements in the solar wind and return them to Earth for scientists to use to determine the exact composition of the Sun and the solar system's origin. NASA’s Genesis project in managed by the Jet Propulsion Laboratory in Pasadena, Calif. Lockheed Martin Astronautics built the Genesis spacecraft for NASA in Denver, Colo. The launch is scheduled for July 30 at 12:36 p.m. EDT KSC-01pp1091

VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians use a crane to move NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/ Randy Beaudoin KSC-2014-4285

CAPE CANAVERAL, Fla. – One of two solid rocket boosters is lifted into the mobile service tower on Launch Pad 37 at Cape Canaveral Air Force Station. It is the left rocket and it will be mated to the GOES-O Delta IV launch vehicle. GOES–O is one of a series of Geostationary Operational Environmental Satellites. The multi-mission GOES series N-P will be a vital contributor to weather, solar and space operations and science. NASA and the National Oceanic and Atmospheric Administration, or NOAA, are actively engaged in a cooperative program to expand the existing GOES system with the launch of the GOES N-P satellites. Launch of the GOES-O is targeted for no earlier than April 2009. Photo credit: NASA/Ben Smegelsky KSC-2009-1905

code Related

KENNEDY SPACE CENTER, FLA. - External Tank 118 (ET-118) is lowered from its cell in the Vehicle Assembly Building in order to place it on a transporter. The tank will be transferred to NASA’s Michoud Assembly Facility in New Orleans. The tank is being installed with an improved bipod fitting, which connects the external fuel tank to the Shuttle during launch. The new design, a significant milestone in the effort to return the Shuttle to safe flight, replaces the foam that was used to prevent ice buildup on the tank’s bipod fittings with four rod-shaped heaters. The heaters are being retrofitted on the 11 existing tanks and incorporated into the manufacture of all new tanks. KSC-04pd2129

KENNEDY SPACE CENTER, FLA. - External Tank 118 (ET-118) is slowly moved above the transporter in the transfer aisle of the Vehicle Assembly Building before being lowered. The tank will be transferred to NASA’s Michoud Assembly Facility in New Orleans. The tank is being installed with an improved bipod fitting, which connects the external fuel tank to the Shuttle during launch. The new design, a significant milestone in the effort to return the Shuttle to safe flight, replaces the foam that was used to prevent ice buildup on the tank’s bipod fittings with four rod-shaped heaters. The heaters are being retrofitted on the 11 existing tanks and incorporated into the manufacture of all new tanks. KSC-04pd2132

KENNEDY SPACE CENTER, FLA. - Workers in the transfer aisle of the Vehicle Assembly Building check the progress of External Tank 118 (ET-118) as it is lowered onto the transporter below it. The tank will be transferred to NASA’s Michoud Assembly Facility in New Orleans. The tank is being installed with an improved bipod fitting, which connects the external fuel tank to the Shuttle during launch. The new design, a significant milestone in the effort to return the Shuttle to safe flight, replaces the foam that was used to prevent ice buildup on the tank’s bipod fittings with four rod-shaped heaters. The heaters are being retrofitted on the 11 existing tanks and incorporated into the manufacture of all new tanks. KSC-04pd2133

KENNEDY SPACE CENTER, FLA. - Workers in the transfer aisle of the Vehicle Assembly Building prepare to lower the External Tank 118 (ET-118) to a horizontal position before being placed on a transporter. The tank will be transferred to NASA’s Michoud Assembly Facility in New Orleans. The tank is being installed with an improved bipod fitting, which connects the external fuel tank to the Shuttle during launch. The new design, a significant milestone in the effort to return the Shuttle to safe flight, replaces the foam that was used to prevent ice buildup on the tank’s bipod fittings with four rod-shaped heaters. The heaters are being retrofitted on the 11 existing tanks and incorporated into the manufacture of all new tanks. KSC-04pd2131

KENNEDY SPACE CENTER, FLA. - After being lowered from its cell in the Vehicle Assembly Building, External Tank 118 (ET-118) is suspended above the transfer aisle before being placed on the transporter at left. The tank will be transferred to NASA’s Michoud Assembly Facility in New Orleans. The tank is being installed with an improved bipod fitting, which connects the external fuel tank to the Shuttle during launch. The new design, a significant milestone in the effort to return the Shuttle to safe flight, replaces the foam that was used to prevent ice buildup on the tank’s bipod fittings with four rod-shaped heaters. The heaters are being retrofitted on the 11 existing tanks and incorporated into the manufacture of all new tanks. KSC-04pd2130

KENNEDY SPACE CENTER, FLA. - External tank 120 is moved from NASA Kennedy Space Center’s Vehicle Assembly Building (in the background) to the Turn Basin and the waiting barge Pegasus. The tank will be loaded onto the barge for transport to NASA’s Michoud Assembly Facility in Louisiana for additional modifications. This tank is the first of the newly designed tanks that were delivered to Kennedy. Previously, the tank was stacked with Discovery and, more recently, Atlantis. The tank has already gone through two tanking cycles during tanking tests but was replaced with tank #121 for Discovery’s return to flight mission STS-114. KSC-05pd2325

KENNEDY SPACE CENTER, FLA. - External tank #120 rests on a transporter in NASA Kennedy Space Center’s Vehicle Assembly Building. The tank will be moved to the nearby Turn Basin and loaded onto the barge Pegasus for towing to NASA’s Michoud Assembly Facility in Louisiana for additional modifications. This tank is the first of the newly designed tanks that were delivered to Kennedy. Previously, the tank was stacked with Discovery and, more recently, Atlantis. The tank has already gone through two tanking cycles during tanking tests but was replaced with tank #121 for Discovery’s return to flight mission STS-114. KSC-05pd2329

KENNEDY SPACE CENTER, FLA. - The redesigned external fuel tank, designated ET-118, that will launch Space Shuttle Atlantis on mission STS-115 is offloaded from the Pegasus barge that carried it from the Michoud Assembly Facility in New Orleans. The tank will be moved into the Vehicle Assembly Building and lifted into a checkout cell for further work. It will fly with many major safety changes, including the removal of the protuberance air load ramps. Photo credit: NASA/Kim Shiflett KSC-06pd1022

KENNEDY SPACE CENTER, FLA. - A Great Blue Heron on the near bank has a front row perch for the arrival of the Pegasus barge being towed into the turn basin at the Launch Complex 39 Area. The barge holds the redesigned external fuel tank, designated ET-118, that will launch Space Shuttle Atlantis on the next shuttle mission, STS-115. The tank was shipped from the Michoud Assembly Facility in New Orleans. After off-loading, the tank will be moved into the Vehicle Assembly Building and lifted into a checkout cell for further work. The tank will fly with many major safety changes, including the removal of the protuberance air load ramps. Photo credit: NASA/Kim Shiflett KSC-06pd1017

KENNEDY SPACE CENTER, FLA. - External Tank 118 (ET-118) is lifted from its cell in the Vehicle Assembly Building in order to place it on a transporter. The tank will be transferred to NASA’s Michoud Assembly Facility in New Orleans. The tank is being installed with an improved bipod fitting, which connects the external fuel tank to the Shuttle during launch. The new design, a significant milestone in the effort to return the Shuttle to safe flight, replaces the foam that was used to prevent ice buildup on the tank’s bipod fittings with four rod-shaped heaters. The heaters are being retrofitted on the 11 existing tanks and incorporated into the manufacture of all new tanks. KSC-04pd2128

description

Summary

KENNEDY SPACE CENTER, FLA. - External Tank 118 (ET-118) is lifted from its cell in the Vehicle Assembly Building in order to place it on a transporter. The tank will be transferred to NASA’s Michoud Assembly Facility in New Orleans. The tank is being installed with an improved bipod fitting, which connects the external fuel tank to the Shuttle during launch. The new design, a significant milestone in the effort to return the Shuttle to safe flight, replaces the foam that was used to prevent ice buildup on the tank’s bipod fittings with four rod-shaped heaters. The heaters are being retrofitted on the 11 existing tanks and incorporated into the manufacture of all new tanks.

The Space Shuttle program was the United States government's manned launch vehicle program from 1981 to 2011, administered by NASA and officially beginning in 1972. The Space Shuttle system—composed of an orbiter launched with two reusable solid rocket boosters and a disposable external fuel tank— carried up to eight astronauts and up to 50,000 lb (23,000 kg) of payload into low Earth orbit (LEO). When its mission was complete, the orbiter would re-enter the Earth's atmosphere and lands as a glider. Although the concept had been explored since the late 1960s, the program formally commenced in 1972 and was the focus of NASA's manned operations after the final Apollo and Skylab flights in the mid-1970s. It started with the launch of the first shuttle Columbia on April 12, 1981, on STS-1. and finished with its last mission, STS-135 flown by Atlantis, in July 2011.

Nothing Found.

label_outline

Tags

kennedy space center external external tank et cell vehicle order transporter michoud nasa michoud new orleans bipod fuel fuel tank milestone effort flight foam ice buildup ice buildup fittings tank bipod fittings heaters manufacture space shuttle high resolution rocket launch nasa
date_range

Date

14/10/2004
collections

in collections

Space Shuttle Program

place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Ice Buildup, Bipod, Nasa Michoud

A Spanish sniper and his spotter, assigned with the

Architectural Fitting (Gong), bronze, China

QUENCH TANK ASSEMBLY INSTRUMENTATION AND BUILDUP

Tugboat Deland in Ice Buildup on the Cape Cod Canal

Detroit, Michigan. Steps in the manufacture of casings for 105 mm. shells in the Budd wheel plant. Lubricating fluid pouring on the base end of a shell which is being finished

CPT. David MCcaughrin from the 448th Civil Affairs Battalion gives away kerosine heaters to an Iraqi civilian at the neighborhood counsel hall in New Baghdad, Iraq on January 26, 2006. The Humanitarian assistance mission was in benefit of the surviving family members of a Vehicle borne improvised explosive devices incident.(U.S. Army photo by SPECIALIST Teddy Wade) (Released)

s133E008746 - STS-133 - Maintenance on the Lab CDRA

HARDWARE AND BUILDUP OF 200 KW KILOWATT WIND TURBINE

HARDWARE AND BUILDUP OF 200 KW KILOWATT WIND TURBINE

s133E008763 - STS-133 - Maintenance on the Lab CDRA

HARDWARE AND BUILDUP OF 200 KW KILOWATT WIND TURBINE

CAPE CANAVERAL, Fla. - In the Vehicle Assembly Building (VAB) at NASA's Kennedy Space Center in Florida, external fuel tank, ET-138, for space shuttle Atlantis' STS-135 mission, is lowered into high bay-1 for joining with the twin solid rocket boosters on the mobile launcher platform. Shuttle Atlantis' move, or "rollover," from Orbiter Processing Facility-1 to the VAB is targeted for May 10. Once there it will be mated with the external tank and boosters. Atlantis and its crew of four will deliver the Raffaello multipurpose logistics module packed with supplies and spare parts to the International Space Station. STS-135 is targeted to launch June 28, and will be the last spaceflight for the Space Shuttle Program. Photo credit: NASA/Jack Pfaller KSC-2011-3043

Topics

kennedy space center external external tank et cell vehicle order transporter michoud nasa michoud new orleans bipod fuel fuel tank milestone effort flight foam ice buildup ice buildup fittings tank bipod fittings heaters manufacture space shuttle high resolution rocket launch nasa