visibility Similar

CAPE CANAVERAL, Fla. – Space shuttle Endeavour, installed on the mobile launcher platform atop the crawler-transporter, moves along the crawlerway at NASA's Kennedy Space Center in Florida as it rolls out to Launch Pad 39B. First motion was at 11:57 p.m. EDT April 16. The 4.2-mile journey is expected to take approximately 7 hours. Endeavour will be prepared on the pad for liftoff in the unlikely event that a rescue mission is necessary following space shuttle Atlantis' launch on the STS-125 mission to service NASA's Hubble Space Telescope. After Atlantis is cleared to land, Endeavour will move to Launch Pad 39A for its upcoming STS-127 mission to the International Space Station, targeted to launch June 13. Photo credit: NASA/Jack Pfaller KSC-2009-2687

STS-114 - LAUNCH - Public domain NASA photogrpaph

STS-124 - EOM - Public domain NASA photogrpaph

KENNEDY SPACE CENTER, Fla. -- The morning daylight casts its rays over the ground and onto Space Shuttle Atlantis atop the Mobile Launcher Platform and crawler-transporter. Vehicles below follow the transporter as it crawls from the Vehicle Assembly Building to Launch Pad 39A. The Shuttle has been in the VAB undergoing tests on the solid rocket booster cables. A prior extensive evaluation of NASA’s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis, causing return of the Shuttle to the VAB a week ago. Launch of Atlantis on STS-98 has been rescheduled to Feb. 7 at 6:11 p.m. EST KSC01pp0181

KENNEDY SPACE CENTER, FLA. - Security is on hand as Space Shuttle Atlantis arrives on Launch Pad 39B via the crawler-transporter. Tracks of the crawler can be seen on the crawlerway. At left of the shuttle are the rotating service structure and fixed service structure. The latter holds the 80-foot lightning mast on top, with its catenary wire extending downward to the left, providing lightning protection. The slow speed of the crawler results in a 6- to 8-hour trek to the pad approximately 4 miles away. Atlantis' launch window begins Aug. 27 for an 11-day mission to the International Space Station. The STS-115 crew of six astronauts will continue construction of the station and install their cargo, the Port 3/4 truss segment with its two large solar arrays. Photo credit: NASA/Tony Gray KSC-06pd1720

Overall view of Space Shuttle Enterprise in launch position on the Space Launch Complex (SLC) #6, commonly known as "SLICK 6", during the ready-to-launch checks to verify launch procedures. Exact Date Shot Unknown

STS-127 - EOM - Public domain NASA photogrpaph

KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour inches its way to Launch Pad 39B via the crawlerway that leads from the Vehicle Assembly Building. The Shuttle is on the Mobile Launcher Platform (MLP) which is atop the crawler-transporter, moving on four double-tracked crawlers. The maximum speed of the loaded transporter is 1 mph. To the left and right of the Space Shuttle can be seen both launch pads, 39B and 39A respectively. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections KSC00pp1624

STS-127 - EOM - Public domain NASA photogrpaph

code Related

Against a cloudless blue sky, Space Shuttle Endeavour stands ready for launch after the rollback of the Rotating Service Structure, at left. Endeavour is targeted for launch tonight at about 10:06 p.m. EST on mission STS-97 to the International Space Station. The orbiter carries the P6 Integrated Truss Segment containing solar arrays that will be temporarily installed to the Unity connecting module by the Z1 truss, recently delivered to and installed on the Station on mission STS-92. The two solar arrays are each more than 100 feet long. They will capture energy from the sun and convert it to power for the Station. Two spacewalks will be required to install the solar array connections KSC-00pp1775

A rising sun illuminates the coastal waters beyond Space Shuttle Endeavour, poised for launch on Nov. 30 at about 10:06 p.m. EST on mission STS-97. On the left, extending toward the orbiter, is the orbiter access arm. The mission to the International Space Station carries the P6 Integrated Truss Segment containing solar arrays and batteries that will be temporarily installed to the Unity connecting module by the Z1 truss, recently delivered to and installed on the Station on mission STS-92. The two solar arrays are each more than 100 feet long. They will capture energy from the sun and convert it to power for the Station. Two spacewalks will be required to install the solar array connections KSC-00padig113

As dawn breaks on the horizon, Space Shuttle Endeavour is seen standing ready for launch, targeted for 10:06 p.m. EST tonight on mission STS-97 to the International Space Station. The Rotating Service Structure was rolled back just before dawn. On top of the orange external tank is the Gaseous Oxygen Vent Arm and its vent hood, known as the “beanie cap.” The hood is raised to clear the external tank 2.5 minutes before launch. The orbiter carries the P6 Integrated Truss Segment containing solar arrays that will be temporarily installed to the Unity connecting module by the Z1 truss, recently delivered to and installed on the Station on mission STS-92. The two solar arrays are each more than 100 feet long. They will capture energy from the sun and convert it to power for the Station. Two spacewalks will be required to install the solar array connections KSC-00pp1777

Members of the STS-97 crew take part in payload walkdown inside the payload changeout room at Launch Pad 39B. In the background is seen some of the batteries being carried to the International Space Station on the mission. What appear to be vertical posts at left are the solar arrays. The batteries and solar arrays are part of the P6 Integrated Truss Segment and will be temporarily installed to the Unity connecting module by the Z1 truss, recently delivered to and installed on the Station on mission STS-92. The two solar arrays are each more than 100 feet long. They will capture energy from the sun and convert it to power for the Station. Two spacewalks will be required to install the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST KSC-00pp1746

Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was stalled several hours to fix a broken cleat on the crawler-transporter. To the left is the Rotating Service Structure. The Orbiter Access Arm is already extended from the Fixed Service Structure to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections KSC-00dig068

The STS-97 crew members wave for the camera as they gather outside Launch Pad 39B. Standing left to right are Mission Specialist Carlos Noriega, Pilot Michael Bloomfield, Commander Brent Jett and Mission Specialists Joseph Tanner and Marc Garneau, who is with the Canadian Space Agency. The mission to the International Space Station carries the P6 Integrated Truss Segment containing solar arrays and batteries that will be temporarily installed to the Unity connecting module by the Z1 truss, recently delivered to and installed on the Station on mission STS-92. The two solar arrays are each more than 100 feet long. They will capture energy from the sun and convert it to power for the Station. Two spacewalks will be required to install the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST KSC-00padig109

Space Shuttle Endeavour finally rests on Launch Pad 39B after its rollout was stalled several hours to fix a broken cleat on the crawler-transporter. At the far left is the Rotating Service Structure. From the Fixed Service Structure, the Orbiter Access Arm is already extended to the orbiter. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections KSC-00dig069

Gathered at Launch Pad 39B, the STS-97 crew pause for a photo. Standing left to right are Mission Specialist Carlos Noriega, Pilot Michael Bloomfield, Commander Brent Jett and Mission Specialists Joseph Tanner and Marc Garneau, who is with the Canadian Space Agency. The mission to the International Space Station carries the P6 Integrated Truss Segment containing solar arrays and batteries that will be temporarily installed to the Unity connecting module by the Z1 truss, recently delivered to and installed on the Station on mission STS-92. The two solar arrays are each more than 100 feet long. They will capture energy from the sun and convert it to power for the Station. Two spacewalks will be required to install the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST KSC-00padig110

In the payload changeout room at Launch Pad 39B, STS-97 Commander Brent Jett (left), Mission Specialist Marc Garneau (center) and Pilot Michael Bloomfield (right) pause during a payload walkdown. The payload comprises the P6 Integrated Truss Segment, with solar arrays and batteries that will be temporarily installed on the recently delivered Z1 truss, connecting them to the Unity module. The two solar arrays are each more than 100 feet long. They will capture energy from the sun and convert it to power for the Station. Two spacewalks will be required to install the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST KSC-00pp1748

After rollback of the Rotating Service Structure (at left), Space Shuttle Endeavour stands ready for launch targeted for 10:06 p.m. EST tonight on mission STS-97 to the International Space Station. The orbiter carries the P6 Integrated Truss Segment containing solar arrays that will be temporarily installed to the Unity connecting module by the Z1 truss, recently delivered to and installed on the Station on mission STS-92. The two solar arrays are each more than 100 feet long. They will capture energy from the sun and convert it to power for the Station. Two spacewalks will be required to install the solar array connections KSC-00pp1776

description

Summary

After rollback of the Rotating Service Structure (at left), Space Shuttle Endeavour stands ready for launch targeted for 10:06 p.m. EST tonight on mission STS-97 to the International Space Station. The orbiter carries the P6 Integrated Truss Segment containing solar arrays that will be temporarily installed to the Unity connecting module by the Z1 truss, recently delivered to and installed on the Station on mission STS-92. The two solar arrays are each more than 100 feet long. They will capture energy from the sun and convert it to power for the Station. Two spacewalks will be required to install the solar array connections

The Space Shuttle program was the United States government's manned launch vehicle program from 1981 to 2011, administered by NASA and officially beginning in 1972. The Space Shuttle system—composed of an orbiter launched with two reusable solid rocket boosters and a disposable external fuel tank— carried up to eight astronauts and up to 50,000 lb (23,000 kg) of payload into low Earth orbit (LEO). When its mission was complete, the orbiter would re-enter the Earth's atmosphere and lands as a glider. Although the concept had been explored since the late 1960s, the program formally commenced in 1972 and was the focus of NASA's manned operations after the final Apollo and Skylab flights in the mid-1970s. It started with the launch of the first shuttle Columbia on April 12, 1981, on STS-1. and finished with its last mission, STS-135 flown by Atlantis, in July 2011.

Nothing Found.

label_outline

Tags

kennedy space center rollback service structure endeavour space shuttle endeavour sts mission sts international space station orbiter truss segment truss segment arrays unity module energy sun power spacewalks two spacewalks connections array connections ksc space shuttle nasa
date_range

Date

1970 - 1979
collections

in collections

Space Shuttle Program

place

Location

Kennedy Space Center, FL
create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Array Connections Ksc, Two Spacewalks, Connections

The Inertial Upper Stage (IUS) booster is lowered toward a workstand in Kennedy Space Center's Vertical Processing Facility. The IUS will be mated with the Chandra X-ray Observatory and then undergo testing to validate the IUS/Chandra connections and check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93 KSC-99pp0619

STS106-304-035 - STS-106 - View of a pair of wire connections on Zvezda during STS-106

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-124 crew get a close look at equipment on the Japanese Experiment Module, called Kibo, including the Remote Manipulator System, or RMS, two robotic arms that support operations on the outside of the Kibo. Crew members are at Kennedy for a crew equipment interface test that includes familiarization with tools and equipment that will be used on the mission. The STS-124 mission is the second of three flights that will launch components to complete the Japanese pressurized module, the Kibo laboratory. The mission will include two spacewalks to install the new lab and its remote manipulator system. The lab's logistics module, which will have been installed in a temporary location during STS-123, will be attached to the new lab. Photo credit: NASA/Kim Shiflett KSC-08pd0058

S121E05575 - STS-121 - Solar array and ITS P1 on the ISS as the orbiter Discovery moves in for docking during STS-121

STS-133 DISCOVERY - WEATHER FRONT - PRE RSS ROLLBACK 2010-5466

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Discovery touches down in darkness on Runway 15 of the KSC Shuttle Landing Facility, bringing to a close the 10-day STS-82 mission to service the Hubble Space Telescope (HST). Main gear touchdown was at 3:32:26 a.m. EST on February 21, 1997. It was the ninth nighttime landing in the history of the Shuttle program and the 35th landing at KSC. The first landing opportunity at KSC was waved off because of low clouds in the area. The seven-member crew performed a record-tying five back-to-back extravehicular activities (EVAs) or spacewalks to service the telescope, which has been in orbit for nearly seven years. Two new scientific instruments were installed, replacing two outdated instruments. Five spacewalks also were performed on the first servicing mission, STS-61, in December 1993. Only four spacewalks were scheduled for STS-82, but a fifth one was added during the flight to install several thermal blankets over some aging insulation covering three HST compartments containing key data processing, electronics and scientific instrument telemetry packages. Crew members are Mission Commander Kenneth D. Bowersox, Pilot Scott J. "Doc" Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Steven L. Smith, Gregory J. Harbaugh, Joseph R. "Joe" Tanner and Steven A. Hawley. STS-82 was the 82nd Space Shuttle flight and the second mission of 1997 KSC-97pc352

STS057-209-003 - STS-057 - Detail views of the SPACEHAB Liquid-Encapsulated Melt Zone experiment.

STS057-233-003 - STS-057 - Detail views of the SPACEHAB Liquid-Encapsulated Melt Zone experiment.

Workers in the Space Station Processing Facility look at the Passive Common Berthing Mechanism (PCBM) that will be attached to the Z1 integrated truss structure, a component of the International Space Station (ISS). The truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999 KSC-98pc1662

STS101-716-002 - STS-101 - Electrical connections on Node 1/Unity module

STS-72. NASA public domain image colelction.

S121E05320 - STS-121 - Nadar view of the U.S. Lab and Node 1 at Discovery's final approach with the ISS during STS-121

Topics

kennedy space center rollback service structure endeavour space shuttle endeavour sts mission sts international space station orbiter truss segment truss segment arrays unity module energy sun power spacewalks two spacewalks connections array connections ksc space shuttle nasa