visibility Similar

code Related

In the Space Station Processing Facility, workers applaud the turnover of the P6 Integrated Truss Structure by International Space Station ground operations to the NASA shuttle integration team in a special ceremony. Standing in front are STS-97 Mission Specialists Joe Tanner and Carlos Noriega plus Pilot Mike Broomfield. Behind and left of Tanner is Mission Specialist Marc Garneau. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST KSC-00pp1663

The International Space Station ground operations officially turn over the P6 Integrated Truss Structure to the NASA shuttle integration team in a ceremony in the Space Station Processing Facility. A symbolic key is presented to Brent Jett (at left), commander on mission STS-97, which is taking the P6 to the International Space Station. Next to him are (left to right) Bill Dowdell, mission manager; Mark Sorensen, outboard truss cargo element manager for Boeing; and John Elbon, Boeing ISS director of ground operations at KSC. Among the attendees at left watching the ceremony are other STS-97 crew members (in uniform, from left) Mission Specialists Joe Tanner and Carlos Noriega and Pilot Mike Bloomfield. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST KSC-00pp1662

The International Space Station ground operations officially turn over the P6 Integrated Truss Structure to the NASA shuttle integration team in a ceremony in the Space Station Processing Facility. A symbolic key is presented to Brent Jett (at left), commander on mission STS-97, which is taking the P6 to the International Space Station. Next to him are (left to right) Bill Dowdell, mission manager; Mark Sorensen, outboard truss cargo element manager for Boeing; and John Elbon, Boeing ISS director of ground operations at KSC. Among the attendees at left watching the ceremony are other STS-97 crew members (in uniform, from left) Mission Specialists Joe Tanner and Carlos Noriega and Pilot Mike Bloomfield. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST KSC00pp1662

Boeing workers officially turn over the P6 Integrated Truss Structure to the NASA shuttle integration team in a ceremony in the Space Station Processing Facility. A symbolic key will be presented to Brent Jett (at left), commander on mission STS-97, which is taking the P6 to the International Space Station. Next to Jett are (left to right) Bill Dowdell, mission manager; Mark Sorensen, outboard truss cargo element manager for Boeing; and John Elbon, Boeing ISS director of ground operations at KSC. Among the attendees at left watching the ceremony are other STS-97 crew members (in uniform, from left) Mission Specialists Joe Tanner and Carlos Noriega and Pilot Mike Bloomfield. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST KSC-00pp1661

In the Space Station Processing Facility, STS-97 Mission Specialists Carlos Noriega (left) and Joe Tanner check out the mission payload, the P6 integrated truss segment. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST KSC-00pp1723

At the Shuttle Landing Facility, STS-97 Mission Specialist Joseph Tanner (left) is greeted by Center Director Roy Bridges on his arrival at KSC from Johnson Space Center. Tanner and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST KSC00pp1756

STS-97 Mission Specialist Joseph Tanner signals thumbs up for launch as he dons his launch and entry suit. this is his third Shuttle flight.; Mission STS-97 is the sixth construction flight to the International Space Station. It is transporting the P6 Integrated Truss Structure that comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the Space Station. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. The 11-day mission includes two spacewalks to complete the solar array connections. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity.. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch is scheduled for Nov. 30 at 10:06 p.m. EST KSC-00pp1779

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-97 Mission Specialist Carlos Noriega checks out the mission payload, the P6 integrated truss segment, while Mission Specialist Joe Tanner looks on. Mission STS-97 is the sixth construction flight to the International Space Station. The P6 comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station’s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a “blanket” that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. The mission includes two spacewalks by Noriega and Tanner to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST KSC-00pp1721

At the Shuttle Landing Facility, Center Director Roy Bridges (left) greets STS-97 Commander Brent Jett on his arrival at KSC for the mission launch. At right is Mission Specialist Carlos Noriega. Jett and Noriega traveled from Johnson Space Center, Houston, Texas, in the T-38 jet aircraft behind them. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST KSC-00pp1753

Workers in the Space Station Processing Facility gather with the crew of mission STS-97, who are holding the symbolic key representing the turnover of the P6 Integrated Truss Structure, part of the payload on their mission. During the ceremony the P6 truss segment was transferred from International Space Station ground operations to the NASA shuttle integration team. Commander Brent Jett (second from right) received the key in the ceremony. Standing with him are (left to right) Mission Specialists Marc Garneau, Joe Tanner and Carlos Noriega, at left; and Pilot Mike Bloomfield, at right. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST KSC-00pp1664

description

Summary

Workers in the Space Station Processing Facility gather with the crew of mission STS-97, who are holding the symbolic key representing the turnover of the P6 Integrated Truss Structure, part of the payload on their mission. During the ceremony the P6 truss segment was transferred from International Space Station ground operations to the NASA shuttle integration team. Commander Brent Jett (second from right) received the key in the ceremony. Standing with him are (left to right) Mission Specialists Marc Garneau, Joe Tanner and Carlos Noriega, at left; and Pilot Mike Bloomfield, at right. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission involves two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

The Space Shuttle program was the United States government's manned launch vehicle program from 1981 to 2011, administered by NASA and officially beginning in 1972. The Space Shuttle system—composed of an orbiter launched with two reusable solid rocket boosters and a disposable external fuel tank— carried up to eight astronauts and up to 50,000 lb (23,000 kg) of payload into low Earth orbit (LEO). When its mission was complete, the orbiter would re-enter the Earth's atmosphere and lands as a glider. Although the concept had been explored since the late 1960s, the program formally commenced in 1972 and was the focus of NASA's manned operations after the final Apollo and Skylab flights in the mid-1970s. It started with the launch of the first shuttle Columbia on April 12, 1981, on STS-1. and finished with its last mission, STS-135 flown by Atlantis, in July 2011.

label_outline

Tags

kennedy space center workers crew sts mission sts turnover truss truss structure payload ceremony segment truss segment ground international space station ground operations integration team nasa shuttle integration team commander brent jett commander brent jett specialists marc garneau mission specialists marc garneau joe tanner joe tanner carlos noriega carlos noriega pilot mike bloomfield pilot mike bloomfield construction construction flight international space station photovoltaic module giant arrays power spacewalks two spacewalks connections array connections est ksc space shuttle nasa
date_range

Date

1960 - 1969
collections

in collections

Space Shuttle Program

place

Location

Kennedy Space Center, FL
create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Mission Specialists Marc Garneau, Pilot Mike Bloomfield, Array Connections

STS084-356-017 - STS-084 - Crewmember activity in the shuttle middeck and flight deck

STS077-369-005 - STS-077 - STS-77 on-orbit portrait

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, members of the STS-124 crew get a close look at equipment on the Japanese Experiment Module, called Kibo, including the Remote Manipulator System, or RMS, two robotic arms that support operations on the outside of the Kibo. Crew members are at Kennedy for a crew equipment interface test that includes familiarization with tools and equipment that will be used on the mission. The STS-124 mission is the second of three flights that will launch components to complete the Japanese pressurized module, the Kibo laboratory. The mission will include two spacewalks to install the new lab and its remote manipulator system. The lab's logistics module, which will have been installed in a temporary location during STS-123, will be attached to the new lab. Photo credit: NASA/Kim Shiflett KSC-08pd0058

STS097-316-002 - STS-097 - MS Garneau operates the RMS arm during the third EVA of STS-97

STS097-373-016 - STS-097 - Views of MS Noriega entering the airlock during STS-97's second EVA

STS072-314-010 - STS-072 - Pilot Brent Jett and Mission Specialist Koichi Wakata work at aft flight deck station

STS082-356-021 - STS-082 - Crewmember activity in the middeck and flight deck

S97E5057 - STS-097 - MS Noriega works in the payload bay during the third EVA of STS-97

STS082-734-072 - STS-082 - EVA 4 activity on Flight Day 7 to service the Hubble Space Telescope

STS-72. NASA public domain image colelction.

KENNEDY SPACE CENTER, FLA. - A Shuttle Training Aircraft (STA) taxis into the parking area of KSC's Shuttle Landing Facility. In the specially configured aircraft, STS-115 Commander Brent Jett and Pilot Christopher Ferguson practiced landing the shuttle this morning. STA practice is part of launch preparations. The STA is a Grumman American Aviation-built Gulf Stream II jet that was modified to simulate an orbiter’s cockpit, motion and visual cues, and handling qualities. In flight, the STA duplicates the orbiter’s atmospheric descent trajectory from approximately 35,000 feet altitude to landing on a runway. Because the orbiter is unpowered during re-entry and landing, its high-speed glide must be perfectly executed the first time. Mission STS-115 is scheduled to lift off about 12:29 p.m. Sept. 6. Mission managers cancelled Atlantis' first launch campaign due to a lightning strike at the pad and the passage of Tropical Storm Ernesto along Florida's east coast. The mission will deliver and install the 17-and-a-half-ton P3/P4 truss segment to the port side of the integrated truss system on the orbital outpost. The truss includes a new set of photovoltaic solar arrays. When unfurled to their full length of 240 feet, the arrays will provide additional power for the station in preparation for the delivery of international science modules over the next two years. STS-115 is expected to last 11 days and includes three scheduled spacewalks. Photo credit: NASA/Kim Shiflett KSC-06pd2033

STS097-310-025 - STS-097 - Pilot Bloomfield in his LES during re-entry preparations for STS-97

Topics

kennedy space center workers crew sts mission sts turnover truss truss structure payload ceremony segment truss segment ground international space station ground operations integration team nasa shuttle integration team commander brent jett commander brent jett specialists marc garneau mission specialists marc garneau joe tanner joe tanner carlos noriega carlos noriega pilot mike bloomfield pilot mike bloomfield construction construction flight international space station photovoltaic module giant arrays power spacewalks two spacewalks connections array connections est ksc space shuttle nasa