visibility Similar

Expedition 49 Preflight (NHQ201609150021)

CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the payload transportation canister containing the International Space Station's Node 3, named Tranquility, is readied for rotation into a vertical position for its move to Launch Pad 39A. The primary payload for space shuttle Endeavour's STS-130 mission, Tranquility is a pressurized module that will provide room for many of the space station's life support systems. Attached to one end of Tranquility is a cupola, a unique work area with six windows on its sides and one on top. The cupola resembles a circular bay window and will provide a vastly improved view of the station's exterior. The multi-directional view will allow the crew to monitor spacewalks and docking operations, as well as provide a spectacular view of Earth and other celestial objects. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency. Launch of STS-130 is targeted for Feb. 7. For information on the STS-130 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts130/index.html. Photo credit: NASA/Dimitri Gerondidakis KSC-2010-1234

CAPE CANAVERAL, Fla. – In the Orbiter Processing Facility-3 engine shop at NASA's Kennedy Space Center in Florida, a transportation canister containing the last Pratt and Whitney Rocketdyne space shuttle main engine, or SSME, is lifted onto a flatbed truck for shipment to NASA's Stennis Space Center in Mississippi. The first two groups of engines were shipped from Kennedy to Stennis in November 2011 and January 2012 the remaining engines departed today. Altogether, 15 shuttle-era engines will be stored at Stennis for reuse on NASA’s Space Launch System heavy-lift rocket, under development. Photo credit: NASA/Dimitri Gerondidakis KSC-2012-1973

KENNEDY SPACE CENTER, FLA. — The Phoenix Mars Lander is moved inside the upper level of the mobile service tower on Launch Pad 17-A at Cape Canaveral Air Force Station. The lander will be mated to the Delta II launch vehicle. Launch of NASA's Phoenix Mars Lander is scheduled for Aug. 3. There are two instantaneous launch times, 5:35:18 and 6:11:24 a.m. EDT. Phoenix will land in icy soils near the north polar permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton KSC-07pd2079

KENNEDY SPACE CENTER, FLA. - At the Shuttle Landing Facility, a crane settles Columbus, the European Space Agency's research laboratory, onto a flat bed truck. The truck will transport the module to the Space Station Processing Facility at NASA's Kennedy Space Center. The module arrived on a Beluga Airbus May 30 at NASA's Kennedy Space Center from the manufacturer in Germany. In the SSPF, the module will be prepared for delivery to the International Space Station on a future space shuttle mission. Columbus will expand the research facilities of the station and provide researchers with the ability to conduct numerous experiments in the area of life, physical and materials sciences. Photo credit: NASA/Jim Grossmann KSC-06pd0962

MMS Move from Bay 2 and Unbagging

CAPE CANAVERAL, Fla. – On Launch Pad 39A, technicians ensure the payload bay door closes properly around the multi-purpose logistics module Leonardo and the lightweight multi-purpose experiment support structure carrier inside space shuttle Discovery's payload bay. Discovery will deliver 33,000 pounds of equipment to the station, including science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch is targeted for late August. Photo credit: NASA/Jack Pfaller KSC-2009-4567

SMAP Spacecraft Arrives at Astrotech

The X-37B Orbital Test Vehicle (OTV-5) is being staged

code Related

The GOES-L satellite is ready for mating with the lower stages of the Atlas IIA rocket on pad 36A, Cape Canaveral Air Force Station. Atlas II is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3 KSC00pp0542

The GOES-L satellite is lifted up the gantry on pad 36A, Cape Canaveral Air Force Station. the Atlas IIA is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3 KSC00pp0541

The GOES-L satellite approaches the end of its journey up the gantry on pad 36A, Cape Canaveral Air Force Station, for mating with the Atlas IIA/Centaur rocket. The Atlas IIA is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3 KSC00pp0544

The GOES-L satellite is about midway in its journey up the gantry on pad 36A, Cape Canaveral Air Force Station. The Atlas IIA rocket is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3 KSC-00pp0543

The GOES-L satellite, after being lifted up to the top of the gantry on pad 36A, Cape Canaveral Air Force Station, is ready for mating with the Atlas IIA/Centaur rocket. Atlas IIA is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3 KSC-00pp0545

The GOES-L satellite arrives on pad 36A, Cape Canaveral Air Force Station. The Atlas IIA rocket is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3 KSC-00pp0540

The Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L launches toward space from Pad A at Complex 36 on Cape Canaveral Air Force Station. Liftoff occurred at 3:07 a.m. EDT. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season KSC-00pp0618

The Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L lifts off at 3:07 a.m. EDT from Pad A at Complex 36 on Cape Canaveral Air Force Station. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season KSC-00pp0621

The Atlas II/Centaur rocket carrying the NASA/NOAA weather satellite GOES-L lifts off at 3:07 a.m. EDT from Pad A at Complex 36 on Cape Canaveral Air Force Station. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, in order to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Once in orbit, the spacecraft is to be designated GOES-11 and will complete its 90-day checkout in time for availability during the 2000 hurricane season KSC00pp0621

The GOES-L satellite is ready for mating with the lower stages of the Atlas IIA rocket on pad 36A, Cape Canaveral Air Force Station. Atlas II is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3 KSC-00pp0542

description

Summary

The GOES-L satellite is ready for mating with the lower stages of the Atlas IIA rocket on pad 36A, Cape Canaveral Air Force Station. Atlas II is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing. Launch is scheduled for May 3

Nothing Found.

label_outline

Tags

kennedy space center goes l satellite goes l satellite stages atlas iia rocket atlas iia rocket station cape canaveral air force station atlas ii payloads earth orbit earth orbit geosynchronous transfer geosynchronous transfer orbit geosynchronous orbit vehicle launch vehicle noaa national system noaa national weather service system imagery weather imagery objective capability capability satellite on orbit storage on orbit storage condition continuity noaa continuity services two satellite constellation two satellite constellation launch services space air force cape canaveral launch pad rocket technology rocket engines constellation march nasa
date_range

Date

21/04/2000
place

Location

Cape Canaveral, FL
create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Goes L Satellite, Atlas Iia Rocket, Atlas Ii

A Hammer Ace technician comutes the elevation and azimuth before sighting the antenna on the geosynchronous satellite. Hammer Ace is a secured long range, air-transportable communications system used by the Air Force Communications Command for rapid response purposes. From the June 1984 AIRMAN Magazine

At Launch Pad 36A on the Cape Canaveral Air Station, the first stage of a Lockheed Martin Atlas II rocket is lifted into an upright position. The rocket will be used to launch the Geostationary Operational Environmental Satellite-L (GOES-L). GOES-L is the latest in the current series of advanced geostationary weather satellites in service. Once in orbit, it will become GOES-11 and function as an on-orbit spare to be activated when one of the operational satellites needs to be replaced. Launch is scheduled for Saturday, May 15 at the opening of a launch window which extends from 2:23 to 4:41 a.m. EDT KSC-99pp0423

At launch pad 36-A, Cape Canaveral Air Force Station, workers check over the second stage of an Atlas II/Centaur rocket before it is lifted up the gantry (behind it) for mating with the first stage. Atlas II is designed to launch payloads into low earth orbit, geosynchronous transfer orbit or geosynchronous orbit. The rocket is the launch vehicle for the GOES-L satellite, part of the NOAA National Weather Service system in weather imagery and atmospheric sounding information. The primary objective of the GOES-L is to provide a full capability satellite in an on-orbit storage condition, to assure NOAA continuity in services from a two-satellite constellation. Launch services are being provided by the 45th Space Wing KSC00pp0424

Bow on view of the US Navy (USN) Arleigh Burke Class (Flight IIA): Guided Missile Destroyer (Aegis), USS BRAINBRIDGE (DDG 96), launching a RIM-67 SM-2 missile from the vertical launch system, while conducting a Missile Exercise (MISSILEX) in the Kennebec River in Maine (ME)

KENNEDY SPACE CENTER, Fla. -- Startled by the thunderous roar of the Space Shuttle Discovery’s engines as it lifts off, birds hurriedly leave the Launch Pad 39A area for a more peaceful site. Liftoff time for the 91st Shuttle launch and last Shuttle-Mir mission was 6:06:24 p.m. EDT June 2. On board Discovery are Mission Commander Charles J. Precourt; Pilot Dominic L. Gorie; and Mission Specialists Wendy B. Lawrence, Franklin R. Chang-Diaz, Janet Lynn Kavandi and Valery Victorovitch Ryumin. The nearly 10-day mission will feature the ninth and final Shuttle docking with the Russian space station Mir, the first Mir docking for the Space Shuttle orbiter Discovery, the first on-orbit test of the Alpha Magnetic Spectrometer (AMS), and the first flight of the new Space Shuttle super lightweight external tank. Astronaut Andrew S. W. Thomas will be returning to Earth as an STS-91 crew member after living more than four months aboard Mir KSC-98pc732

KENNEDY SPACE CENTER, FLA. -- At Launch Complex 36-A, Cape Canaveral Air Force Station, a Lockheed Martin Atlas Centaur IIA (AC-144) rocket is lifted up the launch tower. The rocket will be used in the launch of TDRS-J, scheduled for Nov. 20. The third in a series of telemetry satellites, TDRS-J will help replenish the current constellation of geosynchronous TDRS satellites. The TDRS System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-Earth orbit such as the Hubble Space Telescope. This new advanced series of satellites will extend the availability of TDRS communications services until about 2017. KSC-02pd1525

VANDENBERG AFB, Calif.-- Technicians use a crane to move NASA's Landsat Data Continuity Mission, or LDCM, satellite at the Astrotech processing facility at Vandenberg Air Force Base, Calif. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Launch is planned for Feb. 11, 2013. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA KSC-2012-6518

The logo for the Tracking and Data Relay Satellite (TDRS-H) is predominantly displayed on the fairing that will encapsulate the satellite for launch. The fairing is in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) where TDRS is undergoing testing. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit KSC-00pp0714

At Launch Pad 36A, Cape Canaveral Air Station, a Centaur upper stage is lifted up the gantry for mating with the lower stage Lockheed Martin Atlas IIA rocket already in place. The Lockheed Martin-manufactured Centaur IIA is powered by two Pratt & Whitney turbopump-fed engines, producing a total thrust of 41,600 pounds. The rocket is scheduled to launch the NASA GOES-L satellite on May 15, at the opening of a launch window which extends from 2:23 to 4:41 a.m. EDT. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites KSC-99pp0426

The Air Force and Lockheed Martin launch team successfully launched the Atlas IIA space launch vehicle, designated AC-128, carrying a Loral Tempo Direct Broadcast satellite from space launch complex 36A at Cape Canaveral. The launch took place at 1:01 A.M. EST

A view of the simulator at Test Pad No. 1 after it has been raised for a canister-assisted launch test program (CALTP) missile launch. The canister-assisted launch method for the MGM-134A Small ICBM (SICBM) entails the missile's ejection from the canister by steam pressure prior to the ignition of its propellant stages

TITUSVILLE, Fla. - A truck transporting the Tracking and Data Relay Satellite, TDRS-K, arrives at the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett KSC-2012-6540

Topics

kennedy space center goes l satellite goes l satellite stages atlas iia rocket atlas iia rocket station cape canaveral air force station atlas ii payloads earth orbit earth orbit geosynchronous transfer geosynchronous transfer orbit geosynchronous orbit vehicle launch vehicle noaa national system noaa national weather service system imagery weather imagery objective capability capability satellite on orbit storage on orbit storage condition continuity noaa continuity services two satellite constellation two satellite constellation launch services space air force cape canaveral launch pad rocket technology rocket engines constellation march nasa