visibility Similar

CAPE CANAVERAL, Fla. -- At Astrotech Space Operation's payload processing facility in Titusville, Fla., Lockheed Martin technicians review procedures for weighing one of NASA's twin Gravity Recovery and Interior Laboratory lunar spacecraft before the spacecraft are stacked in their launch configuration in preparation for transport to the launch pad. GRAIL will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. Launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 17B on Cape Canaveral Air Force Station is scheduled for Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Jim Grossmann KSC-2011-6322

NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft

NASA's Lunar Reconnaissance Orbiter (LRO) ROTATION & LIFT

TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians remove covers after a crane was attached to the Radiation Belt Storm Probes, or RBSP, spacecraft A prior to vertical stacking atop RBSP B. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann KSC-2012-4061

CAPE CANAVERAL, Fla. -- TvTechnicians at Astrotech in Titusville, Fla., work on closeouts of the payload attach fitting on NASA's Gamma-Ray Large Area Space Telescope, or GLAST, spacecraft. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. A launch date still is to be determined. Photo credit: NASA/Kim Shiflett KSC-08pd1389

View of Mastracchio on EVA 1 during STS-118/Expedition 15 Joint Operations

Workers in the Payload Hazardous Servicing Facility (PHSF) place a protective covering over the Cassini spacecraft in preparation for its move to Launch Complex 40, Cape Canaveral Air Station (CCAS). Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will study the planet, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1334

In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (background) is moved toward the workstand being readied by technicians (foreground). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket KSC-98pc1081

KENNEDY SPACE CENTER, FLA. -- In the Spacecraft Assembly and Encapsulation Facility -2 (SAEF-2), workers prepare the Mars Climate Orbiter for a spin test. Targeted for launch aboard a Delta II rocket on Dec. 10, 1998, the orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. At the extreme right can be seen the lander in another work area. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for 687 Earth days. It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface KSC-98pc1719

code Related

HUBBLE SPACE TELESCOPE CREW FOR Infrared Array Camera (IRAC)

description

Summary

The original finding aid described this as:

Description: NASA ASTRONAUTS OBSERVE HUBBLE TECHNICIANS WORKING ON THE Infrared Array Camera (IRAC) INSTRUMENT IN PREPARATION FOR SERVICING MISSION 4B.

Photographer: CHRIS GUNN

Date: 4/6/2006

Job Number: 2006-01189-0

Preservation Copy: .tif

2006

Nothing Found.

label_outline

Tags

hubble space telescope crew hubble space telescope crew infrared array camera infrared array camera irac high resolution hubble technicians nasa astronauts servicing mission chris gunn job number preservation copy us national archives
date_range

Date

2006 - 2011
create

Source

The U.S. National Archives
link

Link

https://catalog.archives.gov/
copyright

Copyright info

No known copyright restrictions

label_outline Explore Hubble Space Telescope Crew, Hubble Technicians, Infrared Array Camera

Topics

hubble space telescope crew hubble space telescope crew infrared array camera infrared array camera irac high resolution hubble technicians nasa astronauts servicing mission chris gunn job number preservation copy us national archives