visibility Similar

code Related

P-29516 BW Range: 125, 000 kilometers (78,000 miles) Voyager 2's wide-angle camera captured this view of the outer part of the Uranian ring system just 11 minutes before passing though the ring plane. The resolution in this clear-filter view is slightly better than 9 km (6 mi). The brightest, outermost ring is known as epsilon. Interior to epsilon lie (from top) the newly discovered 10th ring of Uranus--designated 1986UR1 and barely visible here--and then the delta, gamma and eta rings. ARC-1986-A86-7032

P-29506BW Range: 1.12 million kilometers (690,000 miles) This high-resolution image of the epsilon ring of Uranus is a clear-filter picture from Voyager's narrow-angle camera and has a resolution of about 10 km (6 mi). The epsilon ring, approx. 100 km (60 mi) wide at this location, clearly shows a structural variation. Visible here are a broad, bright outer component about 40 km (25 mi) wide; a darker, middle region of comparable width; and a narrow, bright inner strip about 15 km (9 mi) wide. The epsilon-ring structure seen by Voyager is similiar to that observed from the ground with stellar-occultation techniques. This frame represents the first Voyager image that resolves these features within the epsilon ring. The occasional fuzzy splotches on the outer and innerparts of the ring are artifacts left by the removal of reseau marks (used for making measurements on the image). ARC-1986-A86-7022

P-29512 BW Range: 36,000 kilometers (22,000 miles) Miranda, innermost of Uranus' large satellites, is seen at close range as part of a Voyager 2 high-resolution mosaicking sequence. This clear-filter, narrow-angle image shows an area about 250 km (150 mi) across, at a resolution of about 800 meters (2,600 feet). Two distinct terrain types are visible; a rugged, higher-elevation terrain (right) and a lower, striated terrain. Numerous craters on the rugged, higher terain indicate that it is older than the lower terrain. Several scarps, probably faults, cut the different terrains. The impact crater in the lower part of this image is about 25 km (15 mi) across. ARC-1986-A86-7028

P-29521 BW Range: 557,000 kilometers ( 346, 000 miles) The southern hemisphere of Umbriel displays heavy cratering in this Voyager 2 image. This frame, taken through the clear-filter of Voyager's narrow-angle camera, is the most detailed image of Umbriel, with a resolution of about 10 km (6 mi). Umbriel is the darkest of Uranus' larger moons and the one that appears to have experienced the lowest level of geological activity. It has a diameter of about 1,200 km (750 mi) and reflects only 16 percent of the light striking its surface; in the latter respect, Umbriel is similiar to lunar highland areas. Umbriel is heavily cratered but lacks the numerous bright-ray craters seen on the other large Uranian satellites; this results in a relatively uniform surface albedo (reflectivity). The prominent crater on the terminator (upper right) is about 110 km (70 mi) across and has a bright central peak. The strangest feature in this image (at top) is a curious bright ring, the most reflective area seen on Umbriel. The ring is about 140 km (90 mi) in diameter and lies near the satellite's equator. The nature of the ring is not known, although it might be a frost deposit, perhaps associated with an impact crater. Spots against the black background are due to 'noise' in the data. ARC-1986-A86-7037

P-29515 BW Range: 42,000 kilometers (26,000 miles) This image of Miranda, obtained by Voyager 2 on approach, shows an unusual 'chevron' figure and regions of distinctly differing terrain on the Uranian moon. Grooved areas baring light and dark bands, distinct from other areas of mottled terrain, are visible at this resolution of about 600 meters (2,000 feet). The bright V-shaped feature in the grooved areas is the 'cheron' observed in earlier, lower-resolution images. Cutting across the bands are sinuous scarps, probably faults. Superimposed on both types of terrain are many bowl-shaped impact craters less than 5 km (3 mi) wide. The entire picture spans an area about 220 km (140 mi) across. ARC-1986-A86-7031

Range : 2.52 million miles (1.56 million miles) P-29481B/W Voyager 2 returned this photograph with all nine known Uranus rings visible from a 15 sec. exposure through the narrow angle camera. The rings are quite dark and very narrow. The most prominent and outermost of the nine, Epsilon, is seen at top. The next three in toward Uranus, called Delta, Gamma, and Eta, are much fainter and more narrow than Epsilon ring. Then come Beta and Alpha rings, and finally, the innermost grouping, known simply as the 4,5, & 6 rings. The last three are very faint and are at the limit of detection for the Voyager camera. Uranus' rings range in width from about 100 km. (60 mi.) at the widest part of the Epsilon ring, to only a few kilometers for most of the others. this iamge was processed to enhance narrow features; the bright dots are imperfections on the camera detector. The resolution scale is about 50 km. (30 mi.) ARC-1986-A86-7011

P-29510BW Range: 150,000 kilometers (90,000 miles) Nearly the full disk of Miranda can be seen in this clear-filter image taken by Voyager's narrow-angle camera. At this resolution, about 2.7 km (1.7 mi), only two distinct terrain types are visible. One is a bright, rugged, heavily-cratered region seen along the bottom of the disk and extending to the top in a narrow band. The second terrain type is a topographically lower, darker, grooved terrain along the two upper sides in this image. The dark areas had been visible for several days before closest approach in lower-resolution views of the satellite. Scarps, or cliffs, visible along the limbs have a rugged relief of several kilometers in height. ARC-1986-A86-7026

Range : 236,000 km. ( 147,000 mi. ) Resolution : 33 km. ( 20 mi. ) P-29525B/W This Voyager 2 image reveals a contiuos distribution of small particles throughout the Uranus ring system. This unigue geometry, the highest phase angle at which Voyager imaged the rings, allows us to see lanes of fine dust particles not visible from other viewing angles. All the previously known rings are visible. However, some of the brightest features in the image are bright dust lanes not previously seen. the combination of this unique geometry and a long, 96 second exposure allowed this spectacular observation, acquired through the clear filter if Voyager 2's wide angle camera. the long exposure produced a noticable, non-uniform smear, as well as streaks due to trailed stars. ARC-1986-A86-7041

P-29522BW Range: 369,000 kilometers (229,000 miles) This is the highest-resolution picture of Titania returned by Voyager 2. The picture is a composite of two images taken through the clear-filter of Voyager's narrow-angle camera. The resolution of this image is 13 km (8 mi). Titania is the largest satellite of Uranus, with a diameter of little more than 1,600 km (1,000 mi). Abundant impact craters of many sizes pockmark the ancient surface. The most prominant features are fault valleys that stretch across Titania. They are up to 1,500 km (nearly 1,000 mi) long and as much as 75 km (45 mi) wide. In valleys seen at right center, the sunward-facing walls are very bright. While this is due partly to the lighting angle, the brightness also indicates the presence of a lighter material, possibly young frost deposits. An impact crater more than 200 km (125 mi) in diameter distinguishes the very bottom of the disk; the crater is cut by a younger fault valley more than 100 km (60 mi) wide. An even larger impact crater, perhaps 300 km (180 mi) across, is visible at top. ARC-1986-A86-7038

P-29508BW Range: 1.12 million kilometers (690,000 miles) This clear-filter view of the Uranian rings delta, gamma, eta, beta and alpha (from top) was taken with Voyager 2's narrow-angle camera and clearly illustrates the broad outer component and narrow inner component of the eta ring, which orbits Uranus at a radius of some 47,000 km (29,000 mi). The broad component is considerably more transparent than the dense, narrow inner eta component, as well as the other narrow rings shown. Resolution here is about 10 km (6 mi). ARC-1986-A86-7024

description

Summary

P-29508BW Range: 1.12 million kilometers (690,000 miles) This clear-filter view of the Uranian rings delta, gamma, eta, beta and alpha (from top) was taken with Voyager 2's narrow-angle camera and clearly illustrates the broad outer component and narrow inner component of the eta ring, which orbits Uranus at a radius of some 47,000 km (29,000 mi). The broad component is considerably more transparent than the dense, narrow inner eta component, as well as the other narrow rings shown. Resolution here is about 10 km (6 mi).

In 1977, Voyager 1 and 2 started their one-way journey to the end of the solar system and beyond, now traveling a million miles a day. Jimmy Carter was president when NASA launched two probes from Cape Canaveral. Voyager 1 and its twin, Voyager 2, were initially meant to explore Jupiter, Saturn, and their moons. They did that. But then they kept going at a rate of 35,000 miles per hour. Each craft bears an object that is a record, both dubbed the Golden Records. They were the product of Carl Sagan and his team who produced a record that would, if discovered by aliens, represent humanity and "communicate a story of our world to extraterrestrials."

Nothing Found.

label_outline

Tags

arc jpl ames research center bw range million kilometers million kilometers clear filter view clear filter view uranian rings delta uranian rings delta gamma eta beta voyager narrow angle camera narrow angle camera component uranus orbits uranus radius eta component resolution high resolution p 29508 bw range miles nasa geography travel and description
date_range

Date

24/01/1986
collections

in collections

Voyagers

Voyager 1 and 2 probes, their travelog and their message.
place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Clear Filter, Uranian, Narrow Angle Camera

Stativ, komponent till Reaktor R1.

Greek special forces and U.S. Navy Seals rush toward

Eight year old boy tugging at the beets - October

KENNEDY SPACE CENTER, FLA. -- The Comet Nucleus Tour (CONTOUR) spacecraft is on display for the media in the Spacecraft Assembly and Encapsulation Facility 2. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround them. CONTOUR is scheduled for launch aboard a Delta II rocket July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station KSC-02pd0950

KENNEDY SPACE CENTER, FLA. -- Workers help guide the Comet Nucleus Tour (CONTOUR) spacecraft as it is lowered onto the upper stage of a Boeing Delta II rocket for mating. CONTOUR will provide the first detailed look into the heart of a comet -- the nucleus. Flying as close as 60 miles (100 kilometers) to at least two comets, the spacecraft will take the sharpest pictures yet of a nucleus while analyzing the gas and dust that surround these rocky, icy building blocks of the solar system. Launch of CONTOUR aboard the Delta II is scheduled for July 1, 2002, from Launch Complex 17-A, Cape Canaveral Air Force Station KSC-02pd1013

SIXTY-FIRST ANNUAL MEETING [held by] BETA THETA PI FRATERNITY [at] "HOTEL VICTORY; PUT-IN-BAY ISLAND, LAKE ERIE, OH" (HOTEL;)

S37-96-015 - STS-037 - Gamma Ray Observatory (GRO) drifts in space after STS-37 deployment

A component of the AN/AVS-6(V) aviator's night vision imaging system

Public domain stock image. Uranus planet gas giant.

Aerial view of the search periscope and radio mast of a United Kingdom Resolution/Dreadnought Class submarine

Photographs of Representatives who voted "Aye" on the resolution submitting to the legislatures of the several states a proposition to amend the Constitution of the United States as to prohibit slavery

CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, 40-foot-diameter dish antenna arrays are being constructed as part of the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM system. The antennas will be part of the operations command center facility. The construction site is near the former Vertical Processing Facility, which has been demolished. The Ka-BOOM project is one of the final steps in developing the techniques to build a high power, high resolution radar system capable of becoming a Near Earth Object Early Warning System. While also capable of space communication and radio science experiments, developing radar applications is the primary focus of the arrays. Photo credit: NASA/ Ben Smegelsky KSC-2013-1061

Topics

arc jpl ames research center bw range million kilometers million kilometers clear filter view clear filter view uranian rings delta uranian rings delta gamma eta beta voyager narrow angle camera narrow angle camera component uranus orbits uranus radius eta component resolution high resolution p 29508 bw range miles nasa geography travel and description