ccas

96 media by topicpage 1 of 1
Missile Row, Cape Canaveral Air Force Station

Missile Row, Cape Canaveral Air Force Station

A full moon is outdazzled by the lights of the launch gantries below on Missile Row as they stretch north along the shoreline of Cape Canaveral Air Force Station...Image # : PL65C-64612

The Air Force and Lockheed Martin Launch team successfully launched the Atlas I space vehicle, designated AC-78. The missile was carrying the "Satellite per Asteronomia A Raggi" (SAX), a commercial scientific payload, from launch complex 36B, CCAS at 12:31 A.M. EDT

The Air Force and Lockheed Martin Launch team successfully launched th...

The original finding aid described this photograph as: Base: Cape Canaveral Air Force Station State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Rvits Release Status: Releas... More

The Centaur upper stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is transported from the Skid Strip at Cape Canaveral Air Station (CCAS) after its arrival via a jet cargo aircraft. The Titan IV is currently scheduled to lift off from Launch Pad 40 at CCAS on October 6. Once deployed from the Centaur upper stage, Cassini will conduct gravity-assist flybys of the planets Venus and Jupiter, then arrive at Saturn in July 2004. Once there, it will perform an orbital survey of Saturn and send the European Space Agency's Huygens Probe into the dense and seemingly Earthlike atmosphere of Titan. The Cassini project is managed by NASA's Jet Propulsion Laboratory (JPL), Pasadena, California KSC-97pc247

The Centaur upper stage of the Titan IV expendable launch vehicle that...

The Centaur upper stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is transported from the Skid Strip at Cape Canaveral Air Station (CCAS) aft... More

The Centaur upper stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is transported from the Skid Strip at Cape Canaveral Air Station (CCAS) after its arrival via a jet cargo aircraft. The Titan IV is currently scheduled to lift off from Launch Pad 40 at CCAS on October 6. Once deployed from the Centaur upper stage, Cassini will conduct gravity-assist flybys of the planets Venus and Jupiter, then arrive at Saturn in July 2004. Once there, it will perform an orbital survey of Saturn and send the European Space Agency's Huygens Probe into the dense and seemingly Earthlike atmosphere of Titan. The Cassini project is managed by NASA's Jet Propulsion Laboratory (JPL), Pasadena, California KSC-97pc248

The Centaur upper stage of the Titan IV expendable launch vehicle that...

The Centaur upper stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is transported from the Skid Strip at Cape Canaveral Air Station (CCAS) aft... More

The Centaur upper stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is unloaded from a jet cargo aircraft at the Skid Strip at Cape Canaveral Air Station (CCAS). The Titan IV is currently scheduled to lift off from Launch Pad 40 at CCAS on October 6. Once deployed from the Centaur upper stage, Cassini will conduct gravity-assist flybys of the planets Venus and Jupiter, then arrive at Saturn in July 2004. Once there, it will perform an orbital survey of Saturn and send the European Space Agency's Huygens Probe into the dense and seemingly Earthlike atmosphere of Titan. The Cassini project is managed by NASA's Jet Propulsion Laboratory (JPL), Pasadena, California KSC-97pc246

The Centaur upper stage of the Titan IV expendable launch vehicle that...

The Centaur upper stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is unloaded from a jet cargo aircraft at the Skid Strip at Cape Canaveral A... More

The Air Force and Lockheed Martin Launch Team successfully launched the ATLAS IIAS Space Launch vehicle designated AC-127, carrying a communications satellite for Japan Satellite Systems, Inc. (JCSAT-4) from Space Launch Complex 36B, CCAS, today at 8:42 P.M. EST

The Air Force and Lockheed Martin Launch Team successfully launched th...

The original finding aid described this photograph as: Base: Cape Canaveral Air Force Station State: Florida (FL) Country: United States Of America (USA) Scene Camera Operator: Rvits Still Image Laboratory ... More

The Atlas 1 rocket which will launch the GOES-K advanced weather satellite is unloaded from an Air Force C-5 air cargo plane after arrival at the Skid Strip, Cape Canaveral Air Station (CCAS). The Lockheed Martin-built rocket and its Centaur upper stage will form the AC-79 vehicle, the final vehicle in the Atlas 1 series which began launches for NASA in 1962. Future launches of geostationary operational environmental satellites (GOES) in the current series will be on Atlas II vehicles. GOES-K will be the third spacecraft to be launched in the new advanced series of geostationary weather satellites built for NASA and the National Oceanic and Atmospheric Administration (NOAA). The spacecraft will be designated GOES-10 in orbit. The launch of AC-79/GOES-K is targeted for April 24 from Launch Pad 36B, CCAS KSC-97pc356

The Atlas 1 rocket which will launch the GOES-K advanced weather satel...

The Atlas 1 rocket which will launch the GOES-K advanced weather satellite is unloaded from an Air Force C-5 air cargo plane after arrival at the Skid Strip, Cape Canaveral Air Station (CCAS). The Lockheed Mart... More

The Huygens probe, which will study the clouds, atmosphere and surface of Saturn's moon, Titan, as part of the Cassini mission to Saturn, arrives in a cargo plane at the Skid Strip, Cape Canaveral Air Station (CCAS). The probe was designed and developed for the European Space Agency (ESA) by a European industrial consortium led by Aerospatiale as prime contractor. Over the past year, it was integrated and tested at the facilities of Daimler Benz Aerospace Dornier Satellitensysteme in Germany. The probe will be mated to the Cassini orbiter, which was designed and assembled at NASA's Jet Propulsion Laboratory in California. The Cassini launch is targeted for October 6 from CCAS aboard a Titan IVB/Centaur expendable launch vehicle. After arrival at Saturn in 2004, the probe will be released from the Cassini orbiter to enter the Titan atmosphere KSC-97pc594

The Huygens probe, which will study the clouds, atmosphere and surface...

The Huygens probe, which will study the clouds, atmosphere and surface of Saturn's moon, Titan, as part of the Cassini mission to Saturn, arrives in a cargo plane at the Skid Strip, Cape Canaveral Air Station (... More

The Huygens probe, which will study the clouds, atmosphere and surface of Saturn's largest moon, Titan, as part of the Cassini mission to Saturn, is prepared for transport from the Skid Strip, Cape Canaveral Air Station (CCAS), after being off-loaded from a plane. The probe was designed and developed for the European Space Agency (ESA) by a European industrial consortium led by Aerospatiale as prime contractor. Over the past year, it was integrated and tested at the facilities of Daimler Benz Aerospace Dornier Satellitensysteme in Germany. The probe will be mated to the Cassini orbiter, which was designed and assembled at NASA's Jet Propulsion Laboratory in California. The Cassini launch is targeted for October 6 from CCAS aboard a Titan IVB/Centaur expendable launch vehicle. After arrival at Saturn in 2004, the probe will be released from the Cassini orbiter to slowly descend through the Titan atmosphere to the moon's surface KSC-97pc595

The Huygens probe, which will study the clouds, atmosphere and surface...

The Huygens probe, which will study the clouds, atmosphere and surface of Saturn's largest moon, Titan, as part of the Cassini mission to Saturn, is prepared for transport from the Skid Strip, Cape Canaveral Ai... More

Workers in the Payload Hazardous Servicing Facility prepare to begin prelaunch processing of the Huygens probe, which will study the clouds, atmosphere and surface of Saturnþs largest moon, Titan, as part of the Cassini mission to Saturn. The probe was designed and developed for the European Space Agency (ESA) by a European industrial consortium led by Aerospatiale as prime contractor. Over the past year, it was integrated and tested at the facilities of Daimler Benz Aerospace Dornier Satellitensysteme in Germany. The probe will be mated to the Cassini orbiter, which was designed and assembled at NASA's Jet Propulsion Laboratory in California. The Cassini launch is targeted for October 6 from CCAS aboard a Titan IVB/Centaur expendable launch vehicle. After arrival at Saturn in 2004, the probe will be released from the Cassini orbiter to slowly descend through the Titan atmosphere to the moon's surface KSC-97pc610

Workers in the Payload Hazardous Servicing Facility prepare to begin p...

Workers in the Payload Hazardous Servicing Facility prepare to begin prelaunch processing of the Huygens probe, which will study the clouds, atmosphere and surface of Saturnþs largest moon, Titan, as part of th... More

Workers in the Payload Hazardous Servicing Facility prepare to begin prelaunch processing of the Huygens probe, which will study the clouds, atmosphere and surface of Saturn's largest moon, Titan, as part of the Cassini mission to Saturn. The probe was designed and developed for the European Space Agency (ESA) by a European industrial consortium led by Aerospatiale as prime contractor. Over the past year, it was integrated and tested at the facilities of Daimler Benz Aerospace Dornier Satellitensysteme in Germany. The probe will be mated to the Cassini orbiter, which was designed and assembled at NASA's Jet Propulsion Laboratory in California. The Cassini launch is targeted for October 6 from CCAS aboard a Titan IVB/Centaur expendable launch vehicle. After arrival at Saturn in 2004, the probe will be released from the Cassini orbiter to slowly descend through the Titan atmosphere to the moon's surface KSC-97pc609

Workers in the Payload Hazardous Servicing Facility prepare to begin p...

Workers in the Payload Hazardous Servicing Facility prepare to begin prelaunch processing of the Huygens probe, which will study the clouds, atmosphere and surface of Saturn's largest moon, Titan, as part of th... More

The first stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is lowered into a high bay in the Vertical Integration Building at Cape Canaveral Air Station (CCAS) to begin stacking operations. The Titan IV is currently scheduled to lift off from Launch Pad 40 at CCAS on October 6. Once deployed from the Titan's Centaur upper stage, Cassini will conduct gravity-assist flybys of the planets Venus and Jupiter, then arrive at Saturn in July 2004. Once there, it will perform an orbital survey of Saturn and send the European Space Agency's Huygens Probe into the dense and seemingly Earthlike atmosphere of Titan. The Cassini project is managed by NASA's Jet Propulsion Laboratory (JPL), Pasadena, California KSC-97pc640

The first stage of the Titan IV expendable launch vehicle that will pr...

The first stage of the Titan IV expendable launch vehicle that will propel the Cassini spacecraft to Saturn and its moon Titan is lowered into a high bay in the Vertical Integration Building at Cape Canaveral A... More

A Titan IVB core vehicle and its twin Solid Rocket  Motor Upgrades (SRMUs)  depart from the Solid Rocket Motor Assembly and  Readiness Facility (SMARF), Cape Canaveral Air Station (CCAS), en route to Launch  Complex 40. At the pad, the Centaur upper stage will be added and, eventually, the  prime payload, the Cassini spacecraft. Cassini will explore the Saturnian system,  including the planet’s rings and moon, Titan. Launch of the Cassini mission to Saturn is  scheduled for Oct. 6 from Pad 40, CCAS KSC-97PC870

A Titan IVB core vehicle and its twin Solid Rocket Motor Upgrades (SR...

A Titan IVB core vehicle and its twin Solid Rocket Motor Upgrades (SRMUs) depart from the Solid Rocket Motor Assembly and Readiness Facility (SMARF), Cape Canaveral Air Station (CCAS), en route to Launch Co... More

Workers hoist the first stage of a Lockheed Martin Launch Vehicle-2 (LMLV-2) for placement at Launch Complex 46 at Cape Canaveral Air Station (CCAS), Fla. The Lunar Prospector spacecraft is scheduled to launch aboard the LMLV-2 from CCAS in October for an 18-month mission that will orbit the Earth’s Moon to collect data from the lunar surface. Information gathered during the mission will allow construction of a detailed map of the surface composition of the Moon and will improve our understanding of its origin, evolution, current state, and resources KSC-97pc1043

Workers hoist the first stage of a Lockheed Martin Launch Vehicle-2 (L...

Workers hoist the first stage of a Lockheed Martin Launch Vehicle-2 (LMLV-2) for placement at Launch Complex 46 at Cape Canaveral Air Station (CCAS), Fla. The Lunar Prospector spacecraft is scheduled to launch ... More

Workers hoist the first stage of a Lockheed  Martin Launch Vehicle-2 (LMLV-2) for placement at Launch Complex 46 at Cape  Canaveral Air Station (CCAS), Fla. The Lunar Prospector spacecraft is scheduled to  launch aboard the LMLV-2 from CCAS in October for an 18-month mission that will  orbit the Earth’s Moon to collect data from the lunar surface. Information gathered during  the mission will allow construction of a detailed map of the surface composition of the  Moon and will improve our understanding of its origin, evolution, current state, and  resources KSC-97pc1042

Workers hoist the first stage of a Lockheed Martin Launch Vehicle-2 (...

Workers hoist the first stage of a Lockheed Martin Launch Vehicle-2 (LMLV-2) for placement at Launch Complex 46 at Cape Canaveral Air Station (CCAS), Fla. The Lunar Prospector spacecraft is scheduled to laun... More

In the Payload Hazardous Servicing Facility (PHSF), the Cassini spacecraft is prepared for its lift onto a transporter which will move it to Launch Complex 40, Cape Canaveral Air Station (CCAS). Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will study the planet, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1335

In the Payload Hazardous Servicing Facility (PHSF), the Cassini spacec...

In the Payload Hazardous Servicing Facility (PHSF), the Cassini spacecraft is prepared for its lift onto a transporter which will move it to Launch Complex 40, Cape Canaveral Air Station (CCAS). Cassini is an i... More

Workers in the Payload Hazardous Servicing Facility (PHSF) place a protective covering over the Cassini spacecraft in preparation for its move to Launch Complex 40, Cape Canaveral Air Station (CCAS). Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will study the planet, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1334

Workers in the Payload Hazardous Servicing Facility (PHSF) place a pro...

Workers in the Payload Hazardous Servicing Facility (PHSF) place a protective covering over the Cassini spacecraft in preparation for its move to Launch Complex 40, Cape Canaveral Air Station (CCAS). Cassini is... More

Technicians at Launch Complex 40, Cape Canaveral Air Station (CCAS), connect the crane to the top of the Cassini spacecraft in preparation for the lift to the top of its Titan IV/Centaur launch vehicle. Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1306

Technicians at Launch Complex 40, Cape Canaveral Air Station (CCAS), c...

Technicians at Launch Complex 40, Cape Canaveral Air Station (CCAS), connect the crane to the top of the Cassini spacecraft in preparation for the lift to the top of its Titan IV/Centaur launch vehicle. Cassini... More

The Cassini spacecraft is lowered to the top of its Titan IV/Centaur launch vehicle at Launch Complex 40, Cape Canaveral Air Station (CCAS). Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1307

The Cassini spacecraft is lowered to the top of its Titan IV/Centaur l...

The Cassini spacecraft is lowered to the top of its Titan IV/Centaur launch vehicle at Launch Complex 40, Cape Canaveral Air Station (CCAS). Cassini is an international mission conducted by the National Aeronau... More

Technicians at Launch Complex 40, Cape Canaveral Air Station (CCAS), connect the crane to the top of the Cassini spacecraft in preparation for the lift to the top of its Titan IV/Centaur launch vehicle. Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1305

Technicians at Launch Complex 40, Cape Canaveral Air Station (CCAS), c...

Technicians at Launch Complex 40, Cape Canaveral Air Station (CCAS), connect the crane to the top of the Cassini spacecraft in preparation for the lift to the top of its Titan IV/Centaur launch vehicle. Cassini... More

The Cassini spacecraft is rolled out of the Payload Hazardous Servicing Facility (PHSF) at Kennedy Space Center, Fla., shortly before being transported to Complex 40 at Cape Canaveral Air Station (CCAS) where it will be lifted to the top of its Titan IV/Centaur launch vehicle. Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1303

The Cassini spacecraft is rolled out of the Payload Hazardous Servicin...

The Cassini spacecraft is rolled out of the Payload Hazardous Servicing Facility (PHSF) at Kennedy Space Center, Fla., shortly before being transported to Complex 40 at Cape Canaveral Air Station (CCAS) where i... More

Technicians at Cape Canaveral Air Station (CCAS) begin to remove the transportation cover from the Cassini spacecraft after it was lifted to the top of the Titan IV/Centaur launch vehicle at Complex 40. Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1302

Technicians at Cape Canaveral Air Station (CCAS) begin to remove the t...

Technicians at Cape Canaveral Air Station (CCAS) begin to remove the transportation cover from the Cassini spacecraft after it was lifted to the top of the Titan IV/Centaur launch vehicle at Complex 40. Cassini... More

The Cassini spacecraft arrives at Complex 40, Cape Canaveral Air Station (CCAS), where it will be lifted to the top of its Titan IV/Centaur launch vehicle. Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 6, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-97PC1304

The Cassini spacecraft arrives at Complex 40, Cape Canaveral Air Stati...

The Cassini spacecraft arrives at Complex 40, Cape Canaveral Air Station (CCAS), where it will be lifted to the top of its Titan IV/Centaur launch vehicle. Cassini is an international mission conducted by the N... More

The Cassini spacecraft, covered by an environmentally controlled protective enclosure, is lifted at Launch Complex 40, Cape Canaveral Air Station (CCAS), in preparation to mate it to the top of its Titan IV/Centaur launch vehicle. Cassini is an international mission conducted by the National Aeronautics and Space Administration (NASA), the European Space Agency (ESA), and the Italian Space Agency (ASI). The two-story-tall spacecraft, scheduled for launch on Oct. 13, is destined to arrive at Saturn in July 2004, where it will orbit and study Saturn, its rings, moons and magnetic environment in detail over a four-year period. The Cassini mission is managed for NASA's Office of Space Science by the Jet Propulsion Laboratory, a division of the California Institute of Technology KSC-11401f24

The Cassini spacecraft, covered by an environmentally controlled prote...

The Cassini spacecraft, covered by an environmentally controlled protective enclosure, is lifted at Launch Complex 40, Cape Canaveral Air Station (CCAS), in preparation to mate it to the top of its Titan IV/Cen... More

The Cassini spacecraft awaits placement of its payload fairing at Launch Pad 40 at Cape Canaveral Air Station (CCAS) to protect Cassini during launch. Scheduled for launch in mid-October, the Cassini mission is a joint US-European four-year orbital surveillance of Saturn's atmosphere and magnetosphere, its rings, and its moons, seeks insight into the origins and evolution of the early solar system. NASA’s Jet Propulsion Laboratory is managing the Cassini project KSC-11415f07

The Cassini spacecraft awaits placement of its payload fairing at Laun...

The Cassini spacecraft awaits placement of its payload fairing at Launch Pad 40 at Cape Canaveral Air Station (CCAS) to protect Cassini during launch. Scheduled for launch in mid-October, the Cassini mission is... More

The Cassini spacecraft awaits placement of its payload fairing at Launch Pad 40 at Cape Canaveral Air Station (CCAS) to protect Cassini during launch. Scheduled for launch in mid-October, the Cassini mission is a joint US-European four-year orbital surveillance of Saturn's atmosphere and magnetosphere, its rings, and its moons, seeks insight into the origins and evolution of the early solar system. NASA’s Jet Propulsion Laboratory is managing the Cassini project KSC-11415f06

The Cassini spacecraft awaits placement of its payload fairing at Laun...

The Cassini spacecraft awaits placement of its payload fairing at Launch Pad 40 at Cape Canaveral Air Station (CCAS) to protect Cassini during launch. Scheduled for launch in mid-October, the Cassini mission is... More

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October KSC-98pc1262

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), make adjustments while installing the ion propulsion engine on ... More

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), maneuver the ion propulsion engine into place before installation on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October KSC-98pc1263

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), maneuver the ion propulsion engine into place before installati... More

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), attach a strap during installation of the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October KSC-98pc1261

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), attach a strap during installation of the ion propulsion engine... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) finish installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS KSC-98pc1265

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) finish installing the ion propulsion engine on Deep Space 1. ... More

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), install an ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS, in October KSC-98pc1260

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers at the Defense Satellite Communications System Processing Facility (DPF), Cape Canaveral Air Station (CCAS), install an ion propulsion engine on Deep Space 1. The first fli... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) make adjustments while installing the ion propulsion engine on Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS KSC-98pc1264

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) make adjustments while installing the ion propulsion engine o... More

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), after covering the lower portion of Deep Space 1, workers adjust the anti-static blanket covering the upper portion. The blanket will protect the spacecraft during transport to the launch pad. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS KSC-98pc1316

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications ...

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), after covering the lower portion of Deep Space 1, workers adjust the a... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), begin attaching the conical section leaves of the payload transportation container on Deep Space 1 before launch, targeted for Oct. 25 aboard a Boeing Delta 7326 rocket from Launch Pad 17A. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1313

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), begin attaching the conical section leaves of the payload trans... More

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), workers place an anti-static blanket over the lower portion of Deep Space 1, to protect the spacecraft during transport to the launch pad. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS KSC-98pc1317

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications ...

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), workers place an anti-static blanket over the lower portion of Deep Sp... More

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), the lower part of Deep Space 1 is enclosed with the conical section leaves of the payload transportation container prior to its move to Launch Pad 17A. The spacecraft is targeted for launch Oct. 25 aboard a Boeing Delta 7326 rocket. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1315

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications ...

KENNEDY SPACE CENTER, FLA. -- In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), the lower part of Deep Space 1 is enclosed with the conical section le... More

KENNEDY SPACE CENTER, FLA. -  Wrapped in an antistatic blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications System Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) for its trip to Launch Pad 17A.  The spacecraft will be launched aboard Boeing's Delta 7326 rocket in October.  The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including an ion propulsion engine.  Propelled by the gas xenon, the engine is being flight tested for future deep space and Earth-orbiting missions.  Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine.  While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets.  Other onboard experiments include softwre that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers.  Deep Space 1 will complete most of its mission objectives within the firs two months, but will also make a flyby of a near-Earth asteroid, 1992 KD, in July 1999. KSC-98pc1318

KENNEDY SPACE CENTER, FLA. - Wrapped in an antistatic blanket for pro...

KENNEDY SPACE CENTER, FLA. - Wrapped in an antistatic blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications System Processing Facility (DPF) at Cape Canaveral Air Station (C... More

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), move to the workstand the second conical section leaf of the payload transportation container for Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS KSC-98pc1314

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communi...

KENNEDY SPACE CENTER, FLA. -- Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), move to the workstand the second conical section leaf of the pa... More

KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station (CCAS) for its trip to Launch Pad 17A. The spacecraft will be launched aboard a Boeing Delta 7326 rocket on Oct. 25. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999 KSC-98pc1328

KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for pr...

KENNEDY SPACE CENTER, FLA. -- Wrapped in an anti-static blanket for protection, Deep Space 1 is moved out of the Defense Satellite Communications Systems Processing Facility (DPF) at Cape Canaveral Air Station ... More

The GOES-L weather satellite, aboard the trailer, is moved into a building at Astrotech in Titusville for testing of the imaging system, instrumentation, communications and power systems. The satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in March or April, is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-98pc1874

The GOES-L weather satellite, aboard the trailer, is moved into a buil...

The GOES-L weather satellite, aboard the trailer, is moved into a building at Astrotech in Titusville for testing of the imaging system, instrumentation, communications and power systems. The satellite, to be l... More

The GOES-L weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in March or April, is covered and waiting on a semi-trailer truck (in background) that will transport it to Astrotech in Titusville for final testing. It arrived aboard the C-5 air cargo plane (seen in foreground) at CCAS. GOES-L, the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging GOES East weather satellite KSC-98pc1873

The GOES-L weather satellite, to be launched from Cape Canaveral Air S...

The GOES-L weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in March or April, is covered and waiting on a semi-trailer truck (in background) that will transpor... More

Loral workers at Astrotech, Titusville, Fla., stand back as they deploy the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc17

Loral workers at Astrotech, Titusville, Fla., stand back as they deplo...

Loral workers at Astrotech, Titusville, Fla., stand back as they deploy the solar panels of the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite. The satellite is to be launched from Cape Canav... More

The solar panels on the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite are fully deployed. Final testing of the imaging system, instrumentation, communications and power systems also will be performed at the Astrotech facility, Titusville, Fla. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc19

The solar panels on the <a href="http://www-pao.ksc.nasa.gov/kscpao/ca...

The solar panels on the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite are fully deployed. Final testing of the imaging system, instrumentation, communications and power systems also will be ... More

Loral workers at Astrotech, Titusville, Fla., deploy one of the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc16

Loral workers at Astrotech, Titusville, Fla., deploy one of the solar ...

Loral workers at Astrotech, Titusville, Fla., deploy one of the solar panels of the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboar... More

Loral workers at Astrotech, Titusville, Fla., check out the solar panels of the <a href="http://www-pao.ksc.nasa.gov/kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite KSC-99pc18

Loral workers at Astrotech, Titusville, Fla., check out the solar pane...

Loral workers at Astrotech, Titusville, Fla., check out the solar panels of the kscpao/captions/subjects/goes-l.htm">GOES-L</a> weather satellite, to be launched from Cape Canaveral Air Station (CCAS) aboard an... More

At Cape Canaveral Air Station (CCAS), workers help guide the crane lifting a Centaur upper stage onto a transporter. The Centaur arrived at CCAS aboard a U.S. Air Force C-5c (far left). After being mated with the Atlas IIA lower stage, the rocket is scheduled to launch the NASA GOES-L satellite from Launch Pad 36A on May 15. Once in orbit, the satellite will become GOES-11, joining GOES-8, GOES-9 and GOES-10 in space. The fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA), GOES-L is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite will undergo checkout and then provide backup capabilities for the existing, aging operational satellites KSC-99pp0388

At Cape Canaveral Air Station (CCAS), workers help guide the crane lif...

At Cape Canaveral Air Station (CCAS), workers help guide the crane lifting a Centaur upper stage onto a transporter. The Centaur arrived at CCAS aboard a U.S. Air Force C-5c (far left). After being mated with t... More

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is raised for its journey up the launch tower. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE), developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe ¾ hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 at CCAS KSC-99pp0646

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage ...

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is raised for its journey up the launch tower. The rocket is targeted to launch NASA's Far Ultraviolet Spectrosc... More

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is moved into the tower. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE), developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe ¾ hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 at CCAS KSC-99pp0647

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage ...

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is moved into the tower. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE), ... More

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is ready to be lifted into the tower. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE), developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe ¾ hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 at CCAS KSC-99pp0648

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage ...

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is ready to be lifted into the tower. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Expl... More

After its arrival at Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is raised to a vertical position. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE), developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe ¾ hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 at CCAS KSC-99pp0645

After its arrival at Launch Pad 17A, Cape Canaveral Air Station (CCAS)...

After its arrival at Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is raised to a vertical position. The rocket is targeted to launch NASA's Far Ultraviolet Spec... More

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the launch tower again encircles the Boeing Delta II rocket after being mated with its solid rocket boosters. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) on June 23 at CCAS. Developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., FUSE will investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0653

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the launch tower...

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the launch tower again encircles the Boeing Delta II rocket after being mated with its solid rocket boosters. The rocket is targeted to launch NASA's Far Ul... More

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers check the solid rocket boosters overhead being mated with the Boeing Delta II rocket already in place. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) on June 23 at CCAS. Developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., FUSE will investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0652

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers check th...

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers check the solid rocket boosters overhead being mated with the Boeing Delta II rocket already in place. The rocket is targeted to launch NASA's Far U... More

A Boeing Delta II rocket sits on Launch Pad 17A, Cape Canaveral Air Station (CCAS), waiting to be mated with its solid rocket boosters. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) on June 23 at CCAS. Developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., FUSE will investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0650

A Boeing Delta II rocket sits on Launch Pad 17A, Cape Canaveral Air St...

A Boeing Delta II rocket sits on Launch Pad 17A, Cape Canaveral Air Station (CCAS), waiting to be mated with its solid rocket boosters. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Expl... More

A solid rocket booster arrives at Launch Pad 17A, Cape Canaveral Air Station (CCAS), where it will be mated with the Boeing Delta II rocket in the background. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) on June 23 at CCAS. Developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., FUSE will investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0649

A solid rocket booster arrives at Launch Pad 17A, Cape Canaveral Air S...

A solid rocket booster arrives at Launch Pad 17A, Cape Canaveral Air Station (CCAS), where it will be mated with the Boeing Delta II rocket in the background. The rocket is targeted to launch NASA's Far Ultravi... More

Two solid rocket boosters are lifted up the tower on Launch Pad 17A, Cape Canaveral Air Station (CCAS), to be mated with a Boeing Delta II rocket. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) on June 23 at CCAS. Developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., FUSE will investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0651

Two solid rocket boosters are lifted up the tower on Launch Pad 17A, C...

Two solid rocket boosters are lifted up the tower on Launch Pad 17A, Cape Canaveral Air Station (CCAS), to be mated with a Boeing Delta II rocket. The rocket is targeted to launch NASA's Far Ultraviolet Spectro... More

The second stage of a Boeing Delta II rocket is moved inside the launch tower at Launch Pad 17A, Cape Canaveral Air Station (CCAS). The first and second stages will be mated for the launch, targeted on June 23 at CCAS, of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0655

The second stage of a Boeing Delta II rocket is moved inside the launc...

The second stage of a Boeing Delta II rocket is moved inside the launch tower at Launch Pad 17A, Cape Canaveral Air Station (CCAS). The first and second stages will be mated for the launch, targeted on June 23 ... More

The second stage of a Boeing Delta II rocket is lifted up the launch tower at Launch Pad 17A, Cape Canaveral Air Station (CCAS). The first and second stages will be mated for the launch, targeted on June 23 at CCAS, of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite,. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0654

The second stage of a Boeing Delta II rocket is lifted up the launch t...

The second stage of a Boeing Delta II rocket is lifted up the launch tower at Launch Pad 17A, Cape Canaveral Air Station (CCAS). The first and second stages will be mated for the launch, targeted on June 23 at ... More

Under the watchful eyes of workers at Launch Pad 17A, Cape Canaveral Air Station (CCAS), the second stage of a Boeing Delta II rocket is lowered toward the first stage below. The first and second stages will be mated for the launch, targeted on June 23 at CCAS, , of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0656

Under the watchful eyes of workers at Launch Pad 17A, Cape Canaveral A...

Under the watchful eyes of workers at Launch Pad 17A, Cape Canaveral Air Station (CCAS), the second stage of a Boeing Delta II rocket is lowered toward the first stage below. The first and second stages will be... More

In Hangar AE, Cape Canaveral Air Station (CCAS), NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite stands ready to be moved to the launch pad. The black rectangle on top is the optical port; at the lower edge are the radiators. The total length of the instrument is approximately four meters. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. Launch is targeted for June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket KSC-99pp0670

In Hangar AE, Cape Canaveral Air Station (CCAS), NASA's Far Ultraviole...

In Hangar AE, Cape Canaveral Air Station (CCAS), NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite stands ready to be moved to the launch pad. The black rectangle on top is the optical port; at the... More

At Hangar AE, Cape Canaveral Air Station (CCAS), workers attach a solar panel to NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is targeted for launch June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket KSC-99pp0663

At Hangar AE, Cape Canaveral Air Station (CCAS), workers attach a sola...

At Hangar AE, Cape Canaveral Air Station (CCAS), workers attach a solar panel to NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE was developed by The Johns Hopkins University under contract... More

NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite stands in the Hangar A&E, Cape Canaveral Air Station (CCAS), ready for its launch, targeted for June 23 from Launch Pad 17A, CCAS aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0668

NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite stands ...

NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite stands in the Hangar A&E, Cape Canaveral Air Station (CCAS), ready for its launch, targeted for June 23 from Launch Pad 17A, CCAS aboard a Boeing D... More

Workers at Hangar AE, Cape Canaveral Air Station (CCAS), check NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite after moving it from the scaffolding behind it. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. The satellite is targeted for launch June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket KSC-99pp0667

Workers at Hangar AE, Cape Canaveral Air Station (CCAS), check NASA's ...

Workers at Hangar AE, Cape Canaveral Air Station (CCAS), check NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite after moving it from the scaffolding behind it. FUSE was developed by The Johns Hopk... More

At Hangar AE, Cape Canaveral Air Station (CCAS), workers get ready to move a solar panel to be attached to NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite in the background. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is targeted for launch June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket KSC-99pp0662

At Hangar AE, Cape Canaveral Air Station (CCAS), workers get ready to ...

At Hangar AE, Cape Canaveral Air Station (CCAS), workers get ready to move a solar panel to be attached to NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite in the background. FUSE was developed by... More

Workers at Hangar AE, Cape Canaveral Air Station (CCAS), get ready to move the scaffolding from around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is targeted for launch June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0666

Workers at Hangar AE, Cape Canaveral Air Station (CCAS), get ready to ...

Workers at Hangar AE, Cape Canaveral Air Station (CCAS), get ready to move the scaffolding from around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is targeted for launch June 23 from La... More

At Hangar AE, Cape Canaveral Air Station (CCAS), workers check the installation of a solar panel on NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is targeted for launch June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket KSC-99pp0665

At Hangar AE, Cape Canaveral Air Station (CCAS), workers check the ins...

At Hangar AE, Cape Canaveral Air Station (CCAS), workers check the installation of a solar panel on NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE was developed by The Johns Hopkins Univer... More

Standing in Hangar AE, Cape Canaveral Air Station (CCAS) is NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The black rectangle on top is the optical port; at the lower right is the solar panel; behind (left) the lower edge of the panel are the radiators. The total length of the instrument is approximately four meters. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. Launch is targeted for June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket KSC-99pp0669

Standing in Hangar AE, Cape Canaveral Air Station (CCAS) is NASA's Far...

Standing in Hangar AE, Cape Canaveral Air Station (CCAS) is NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The black rectangle on top is the optical port; at the lower right is the solar panel;... More

At Hangar AE, Cape Canaveral Air Station (CCAS), workers move a solar panel toward NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite before attaching it. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is targeted for launch June 23 from Launch Pad 17A, CCAS, aboard a Boeing Delta II rocket KSC-99pp0664

At Hangar AE, Cape Canaveral Air Station (CCAS), workers move a solar ...

At Hangar AE, Cape Canaveral Air Station (CCAS), workers move a solar panel toward NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite before attaching it. FUSE was developed by The Johns Hopkins Uni... More

NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite is fitted with another row of canister segments before being moved to Launch Pad 17A, CCAS. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 aboard a Boeing Delta II rocket KSC-99pp0690

NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite is fitt...

NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite is fitted with another row of canister segments before being moved to Launch Pad 17A, CCAS. FUSE was developed by The Johns Hopkins University unde... More

Workers at Hangar AE, Cape Canaveral Air Station (CCAS), fit the second row of canister segments around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is being prepared for its transfer to Launch Pad 17A, CCAS, and its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0689

Workers at Hangar AE, Cape Canaveral Air Station (CCAS), fit the secon...

Workers at Hangar AE, Cape Canaveral Air Station (CCAS), fit the second row of canister segments around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is being prepared for its tr... More

At Hangar AE, Cape Canaveral Air Station (CCAS), workers move segments of the canister that will be installed around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite in the background. The satellite is being prepared for its transfer to Launch Pad 17A, CCAS, and its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0687

At Hangar AE, Cape Canaveral Air Station (CCAS), workers move segments...

At Hangar AE, Cape Canaveral Air Station (CCAS), workers move segments of the canister that will be installed around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite in the background. The satelli... More

Workers at Hangar AE, Cape Canaveral Air Station (CCAS), adjust the canister segments they are installing around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is being prepared for its transfer to Launch Pad 17A, CCAS, and its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0688

Workers at Hangar AE, Cape Canaveral Air Station (CCAS), adjust the ca...

Workers at Hangar AE, Cape Canaveral Air Station (CCAS), adjust the canister segments they are installing around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is being prepared f... More

At Hangar AE, Cape Canaveral Air Station (CCAS), the last segment is lifted over the top of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite already encased in a protective canister. The satellite will next be moved to Launch Pad 17A, CCAS, for its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0692

At Hangar AE, Cape Canaveral Air Station (CCAS), the last segment is l...

At Hangar AE, Cape Canaveral Air Station (CCAS), the last segment is lifted over the top of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite already encased in a protective canister. The satellite... More

At Hangar AE, Cape Canaveral Air Station (CCAS), workers on scaffolding pull down a weather-proofing cover over the canister surrounding NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite will next be moved to Launch Pad 17A, CCAS, for its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0693

At Hangar AE, Cape Canaveral Air Station (CCAS), workers on scaffoldin...

At Hangar AE, Cape Canaveral Air Station (CCAS), workers on scaffolding pull down a weather-proofing cover over the canister surrounding NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satel... More

At Hangar AE, Cape Canaveral Air Station (CCAS), workers get ready to finish erecting the canister around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite at left. At right is the last segment which will be placed on the top. The satellite will next be moved to Launch Pad 17A, CCAS, for its scheduled launch June 23 aboard a Boeing Delta II rocket. FUSE was developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md., to investigate the origin and evolution of the lightest elements in the universe hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum KSC-99pp0691

At Hangar AE, Cape Canaveral Air Station (CCAS), workers get ready to ...

At Hangar AE, Cape Canaveral Air Station (CCAS), workers get ready to finish erecting the canister around NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite at left. At right is the last segment whi... More

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers check out the protective cover placed over the top of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe KSC-99pp0702

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers check ou...

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers check out the protective cover placed over the top of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. The satellite is scheduled to ... More

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers look over NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite after sections of the canister have been removed. FUSE is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe KSC-99pp0703

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers look ove...

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers look over NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite after sections of the canister have been removed. FUSE is scheduled to be l... More

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers begin removing the lower sections of the canister surrounding NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe. FUSE is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket KSC-99pp0700

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers begin re...

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers begin removing the lower sections of the canister surrounding NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to sc... More

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers remove another section of the canister surrounding NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe. FUSE is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket KSC-99pp0701

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers remove a...

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers remove another section of the canister surrounding NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to scour the cos... More

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers begin to remove the canister around the top of the NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe. FUSE is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket KSC-99pp0698

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers begin to...

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers begin to remove the canister around the top of the NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to scour the cos... More

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers oversee the removal of the canister from the top of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to scour the cosmos for the fossil record of the origins of the universe hydrogen and deuterium. Scientists will use FUSE to study hydrogen and deuterium to unlock the secrets of how the primordial chemical elements of which all stars, planets and life evolved, were created and distributed since the birth of the universe. FUSE is scheduled to be launched from CCAS June 23 aboard a Boeing Delta II rocket KSC-99pp0699

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers oversee ...

At Launch Pad 17A, Cape Canaveral Air Station (CCAS), workers oversee the removal of the canister from the top of NASA's Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. FUSE is designed to scour the co... More

At Cape Canaveral Air Station's (CCAS) Complex 3/4, officials held a ceremony kicking off a year-long series of events commemorating 50 years of launches from the Space Coast that began with the Bumper rockets. At left is Jim Thompson, who is with CCAS. Unveiling the 50th anniversary logo at left is the artist Darlene Egli. On stage, from left to right, are Lt. Col. Randall K. Horn, Commander, CCAS; Congressman David Weldon, 15th Congressional District of the State of Florida; Lieutenant Governor of the State of Florida Frank T. Brogan; Center Director Roy D. Bridges; and Executive Director Edward F. Gormel, Joint Performance Management Office. Also present (but not seen) is Brig. Gen. Donald P. Pettit, Commander, 45th Space Wing. After six Bumper launches at White Sands Proving Grounds, N.M., and a failed Bumper 7, a successful Bumper 8 lifted off July 24, 1950, from Complex 3/4 to conduct aerodynamic investigations around Mach 7 at relatively low altitudes. The kick-off event also inaugurated a student art contest to design a commemorative etching. The winning artwork will be permanently displayed on a 24-inch black granite square in the U.S. space Walk Hall of Fame in Titusville, Fla KSC-99pp1065

At Cape Canaveral Air Station's (CCAS) Complex 3/4, officials held a c...

At Cape Canaveral Air Station's (CCAS) Complex 3/4, officials held a ceremony kicking off a year-long series of events commemorating 50 years of launches from the Space Coast that began with the Bumper rockets.... More

At Cape Canaveral Air Station's (CCAS) Complex 3/4, officials held a ceremony kicking off a year-long series of events commemorating 50 years of launches from the Space Coast that began with the Bumper rockets. At left is artist Darlene Egli who designed the 50th anniversary logo next to her. On stage, from left to right, are Lt. Col. Randall K. Horn, Commander, CCAS; Brig. Gen. Donald P. Pettit, Commander, 45th Space Wing; Congressman David Weldon, 15th Congressional District of the State of Florida; Lieutenant Governor of the State of Florida Frank T. Brogan; Center Director Roy D. Bridges; and Executive Director Edward F. Gormel, Joint Performance Management Office. After six Bumper launches at White Sands Proving Grounds, N.M., and a failed Bumper 7, a successful Bumper 8 lifted off July 24, 1950, from Complex 3/4 to conduct aerodynamic investigations around Mach 7 at relatively low altitudes. The kick-off event also inaugurated a student art contest to design a commemorative etching. The winning artwork will be permanently displayed on a 24-inch black granite square in the U.S. Space Walk Hall of Fame in Titusville, Fla KSC-99pp1066

At Cape Canaveral Air Station's (CCAS) Complex 3/4, officials held a c...

At Cape Canaveral Air Station's (CCAS) Complex 3/4, officials held a ceremony kicking off a year-long series of events commemorating 50 years of launches from the Space Coast that began with the Bumper rockets.... More

At Cape Canaveral Air Station's (CCAS) Complex 3/4, officials held a ceremony kicking off a year-long series of events commemorating 50 years of launches from the Space Coast that began with the Bumper rockets. At right, Norris Gray, a Bumper Program veteran, unveils a street sign that will be used to mark the road leading to the launch complex from which Bumper was launched. Seen on the stage are, left to right, Lt. Col. Randall K. Horn (at the podium), Commander, CCAS; Congressman David Weldon, 15th Congressional District of the State of Florida; Lieutenant Governor of the State of Florida Frank T. Brogan; Center Director Roy D. Bridges; and Executive Director Edward F. Gormel, Joint Performance Management Office. Also present (but not seen) is Brig. Gen. Donald P. Pettit, Commander, 45th Space Wing. After six Bumper launches at White Sands Proving Grounds, N.M., and a failed Bumper 7, a successful Bumper 8 lifted off July 24, 1950, from Complex 3/4 to conduct aerodynamic investigations around Mach 7 at relatively low altitudes. The kick-off event also inaugurated a student art contest to design a commemorative etching. The winning artwork will be permanently displayed on a 24-inch black granite square in the U.S. Space Walk Hall of Fame in Titusville, Fla KSC-99pp1067

At Cape Canaveral Air Station's (CCAS) Complex 3/4, officials held a c...

At Cape Canaveral Air Station's (CCAS) Complex 3/4, officials held a ceremony kicking off a year-long series of events commemorating 50 years of launches from the Space Coast that began with the Bumper rockets.... More

During Terminal Countdown Demonstration Test (TCDT) emergency egress training, STS-103 Commander Curtis L. Brown Jr. practices driving a small armored personnel carrier. Riding on the front is Capt. George Hoggard, a trainer with the KSC/CCAS Fire Department. In the carrier behind Brown is (left to right) Pilot Scott J. Kelly and Mission Specialists Steven L. Smith and John M. Grunsfeld (Ph.D.). The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The other STS-103 crew members are Mission Specialists C. Michael Foale (Ph.D.), plus Claude Nicollier of Switzerland and Jean-François Clervoy of France, who are with the European Space Agency. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST KSC-99pp1318

During Terminal Countdown Demonstration Test (TCDT) emergency egress t...

During Terminal Countdown Demonstration Test (TCDT) emergency egress training, STS-103 Commander Curtis L. Brown Jr. practices driving a small armored personnel carrier. Riding on the front is Capt. George Hogg... More

The STS-103 crew pose for photographers following Terminal Countdown Demonstration Test (TCDT) emergency egress training on the small armored personnel carrier behind them. Standing left to right are Pilot Scott J. Kelly, Mission Specialists Steven L. Smith, John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland, their trainer on the carrier Capt. George Hoggard of the KSC/CCAS Fire Department, Commander Curtis L. Brown Jr., and Mission Specialists C. Michael Foale (Ph.D.) and Jean-Francois Clervoy of France. Nicollier and Clervoy are with the European Space Agency. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-103 is a "call-up" mission due to the need to replace and repair portions of the Hubble Space Telescope. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST KSC-99pp1319

The STS-103 crew pose for photographers following Terminal Countdown D...

The STS-103 crew pose for photographers following Terminal Countdown Demonstration Test (TCDT) emergency egress training on the small armored personnel carrier behind them. Standing left to right are Pilot Scot... More

KENNEDY SPACE CENTER, Fla.  --  At the 195-foot level of the Fixed Service Structure on Launch Pad 39A, the STS-101 crew take part in training during a Terminal Countdown Demonstration Test (TCDT). Activities during TCDT include emergency egress from the orbiter and a dress rehearsal for launch. Standing left to right are Pilot Scott Horowitz, Jeffrey Williams, Commander James Halsell, and Mission Specialists Yury Usachev, James Voss, Mary Ellen Weber, and Susan Helms. At right is trainer Capt. George Hoggard of the KSC/CCAS Fire Department. Not seen in the photo is Pilot Scott Horowitz. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A KSC-00pp0452

KENNEDY SPACE CENTER, Fla. -- At the 195-foot level of the Fixed Ser...

KENNEDY SPACE CENTER, Fla. -- At the 195-foot level of the Fixed Service Structure on Launch Pad 39A, the STS-101 crew take part in training during a Terminal Countdown Demonstration Test (TCDT). Activities d... More

KENNEDY SPACE CENTER, Fla.  --  Capt. George Hoggard (left) of the KSC/CCAS Fire Department gives instruction to STS-101 Mission Specialist Yury Usachev (right) in the driver seat of an M-113 personnel carrier. The training is part of Terminal Countdown Demonstration Test (TCDT) activities that include emergency egress training and a simulated launch countdown. Other crew members taking part are Commander James D. Halsell Jr., Pilot Scott J. "Doc" Horowitz and Mission Specialists Mary Ellen Weber, James Voss, Jeffrey N. Williams and Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A KSC-00pp0465

KENNEDY SPACE CENTER, Fla. -- Capt. George Hoggard (left) of the KSC...

KENNEDY SPACE CENTER, Fla. -- Capt. George Hoggard (left) of the KSC/CCAS Fire Department gives instruction to STS-101 Mission Specialist Yury Usachev (right) in the driver seat of an M-113 personnel carrier.... More

KENNEDY SPACE CENTER, Fla.  --  At the 195-foot level of the Fixed Service Structure on Launch Pad 39A, the STS-101 crew take part in training during a Terminal Countdown Demonstration Test (TCDT). Activities during TCDT include emergency egress from the orbiter and a dress rehearsal for launch. Standing left to right are Pilot Scott Horowitz, Jeffrey Williams, Commander James Halsell, and Mission Specialists Yury Usachev, James Voss, Mary Ellen Weber, and Susan Helms. At right is trainer Capt. George Hoggard of the KSC/CCAS Fire Department. Not seen in the photo is Pilot Scott Horowitz. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A KSC00pp0452

KENNEDY SPACE CENTER, Fla. -- At the 195-foot level of the Fixed Ser...

KENNEDY SPACE CENTER, Fla. -- At the 195-foot level of the Fixed Service Structure on Launch Pad 39A, the STS-101 crew take part in training during a Terminal Countdown Demonstration Test (TCDT). Activities d... More

KENNEDY SPACE CENTER, Fla.  --  Capt. George Hoggard (left) of the KSC/CCAS Fire Department gives instruction to STS-101 Mission Specialist Yury Usachev (right) in the driver seat of an M-113 personnel carrier. The training is part of Terminal Countdown Demonstration Test (TCDT) activities that include emergency egress training and a simulated launch countdown. Other crew members taking part are Commander James D. Halsell Jr., Pilot Scott J. "Doc" Horowitz and Mission Specialists Mary Ellen Weber, James Voss, Jeffrey N. Williams and Susan Helms. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A KSC00pp0465

KENNEDY SPACE CENTER, Fla. -- Capt. George Hoggard (left) of the KSC...

KENNEDY SPACE CENTER, Fla. -- Capt. George Hoggard (left) of the KSC/CCAS Fire Department gives instruction to STS-101 Mission Specialist Yury Usachev (right) in the driver seat of an M-113 personnel carrier.... More

KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. Behind him on the left is George Hoggard, of the KSC/CCAS Fire Department, who supervises the driving. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. Other STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialist Daniel Barry; and the Expedition Three crew, Commander Frank Culbertson, and cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001 KSC-01pp1304

KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forre...

KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialist Patrick Forrester is ready to take the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. Behind him on t... More

KENNEDY SPACE CENTER, FLA. - During Terminal Countdown Demonstration Test activities at KSC, STS-11 Commander Kenneth Cockrell practices driving the M-113 armored personnel carrier, part of emergency egress training at the pad.  Supervising in front (left) is George Hoggard, with the KSC/CCAS Fire Department, who supervises the driving.  Passengers in the M-113 (behind Hoggard) are Expedition 5 crew members Valeri Korzun and Peggy Whitson. The TCDT also includes a simulated launch countdown   Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost.  The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. . Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002 KSC-02pd0686

KENNEDY SPACE CENTER, FLA. - During Terminal Countdown Demonstration T...

KENNEDY SPACE CENTER, FLA. - During Terminal Countdown Demonstration Test activities at KSC, STS-11 Commander Kenneth Cockrell practices driving the M-113 armored personnel carrier, part of emergency egress tra... More

KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities at KSC, Expedition 5 crew member Sergei Treschev pauses before climbing inside the M-113 armored personnel carrier, used for emergency egress training at the pad.  At left (behind Treschev) is George Hoggard, with the KSC/CCAS Fire Department, who supervises the driving.  At right are Expedition 5 member Peggy Whitson and astronaut Tracy Caldwell (far right), a mission specialist candidate currently assigned to the Astronaut Office Space Station Operations Branch. The TCDT also includes a simulated launch countdown   Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost.  The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. . Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002 KSC-02pd0687

KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration ...

KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities at KSC, Expedition 5 crew member Sergei Treschev pauses before climbing inside the M-113 armored personnel carrier, used for... More

KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities at KSC, Expedition 5 member Peggy Whitson drives the M-113 armored personnel carrier, used for emergency egress training at the pad.  Passengers in the vehicle are Expedition 5 Commander Valeri Korzun and George Hoggard (center), with the KSC/CCAS Fire Department, who supervises the driving.  Expedition 5 will travel to the International Space Station on mission STS-111 as the replacement crew for Expedition 4, who will return to Earth aboard Endeavour. The TCDT also includes a simulated launch countdown   Known as Utilization Flight -2, the mission includes attaching a Canadian-built mobile base system to the International Space Station that will enable the Canadarm2 robotic arm to move along a railway on the Station's truss to build and maintain the outpost.  The crew will also replace a faulty wrist/roll joint on the Canadarm2 as well as unload almost three tons of experiments and supplies from the Italian-built Multi-Purpose Logistics Module Leonardo. Launch of Space Shuttle Endeavour on mission STS-111 is scheduled for May 30, 2002 KSC-02pd0690

KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration ...

KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities at KSC, Expedition 5 member Peggy Whitson drives the M-113 armored personnel carrier, used for emergency egress training at ... More

Dr. John Paciorek discusses the contract receipt and

Dr. John Paciorek discusses the contract receipt and

Dr. John Paciorek discusses the contract receipt and review process with Staff Sgt. Adriane Dunklin, left, and Sgt. 1st Class Renae Trujillo during a pilot course developing targeted content for leaders at the ... More

Lt. Col. Rich Downs leads discussion on contingency

Lt. Col. Rich Downs leads discussion on contingency

Lt. Col. Rich Downs leads discussion on contingency contract administration services during a pilot training course developing targeted content for leaders at the executive level March 12 at Joint Base Lewis-Mc... More

Soldiers discuss contingency contract administration

Soldiers discuss contingency contract administration

Soldiers discuss contingency contract administration services during a pilot training course targeting leaders at the executive level March 12 at Joint Base Lewis-McChord. The two-day course provided and overvi... More