addition, nasa

950 media by topicpage 1 of 10
KENNEDY SPACE CENTER, FLA.  --   Sandpipers investigate a washed up horseshoe crab on the river bank on Kennedy Space Center. Sandpipers are found on shores and in wetlands around the globe, breeding on the Arctic tundra then returning to more temperate climes.   KSC shares a boundary with the Merritt Island Wildlife Nature Refuge. The refuge is a habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles. In addition, the Refuge supports 19 endangered or threatened wildlife species on Federal or State lists, more than any other single refuge in the U.S.   Photo credit: NASA/Dimitri Gerondidakis KSC-07pd0869

KENNEDY SPACE CENTER, FLA. -- Sandpipers investigate a washed up ho...

KENNEDY SPACE CENTER, FLA. -- Sandpipers investigate a washed up horseshoe crab on the river bank on Kennedy Space Center. Sandpipers are found on shores and in wetlands around the globe, breeding on the Arc... More

Compressor Stage in the 8- by 6-Foot Supersonic Wind Tunnel

Compressor Stage in the 8- by 6-Foot Supersonic Wind Tunnel

A technician at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory examines one of the massive axial-flow compressor stages that created the high-speed air flow through th... More

Noise Suppression Addition to the 8- by 6-Foot Supersonic Wind Tunnel

Noise Suppression Addition to the 8- by 6-Foot Supersonic Wind Tunnel

The 8- by 6-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory was the largest supersonic wind tunnel in the nation at the time and the only... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis' main engines and solid rocket boosters ignite on Launch Pad 39A leaving behind a billow of steam as it lifts off on its STS-135 mission to the International Space Station.        Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tony Gray and Kevin O'Connell KSC-2011-5421

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, spa...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis' main engines and solid rocket boosters ignite on Launch Pad 39A leaving behind a billow of steam as it lifts off on its... More

CAPE CANAVERAL, Fla. -- Dressed in their bright-orange launch-and-entry suits, the final four astronauts to launch aboard a space shuttle exit the Astronaut Crew Quarters in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. STS-135 Commander Chris Ferguson is followed by Pilot Doug Hurley and Mission Specialists Rex Walheim and Sandy Magnus. The astronauts, who will head to Launch Pad 39A aboard the silver Astrovan, are scheduled to lift off aboard space shuttle Atlantis at 11:26 a.m. EDT on July 8 for their mission to the International Space Station.    STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the orbiting outpost. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett KSC-2011-5204

CAPE CANAVERAL, Fla. -- Dressed in their bright-orange launch-and-entr...

CAPE CANAVERAL, Fla. -- Dressed in their bright-orange launch-and-entry suits, the final four astronauts to launch aboard a space shuttle exit the Astronaut Crew Quarters in the Operations and Checkout Building... More

CAPE CANAVERAL, Fla. -- NASA photographer Sandra Joseph aims her remote camera tracker on space shuttle Atlantis at it lifts off from Launch Pad 39A at NASA's Kennedy Space Center in Florida beginning its STS-135 mission to the International Space Station.          Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Sandra Joseph KSC-2011-5380

CAPE CANAVERAL, Fla. -- NASA photographer Sandra Joseph aims her remot...

CAPE CANAVERAL, Fla. -- NASA photographer Sandra Joseph aims her remote camera tracker on space shuttle Atlantis at it lifts off from Launch Pad 39A at NASA's Kennedy Space Center in Florida beginning its STS-1... More

CAPE CANAVERAL, Fla. -  In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Kibo Experiment Logistics Module Exposed Section, or ELM-ES, is exposed after removal of the shipping container. The ELM-ES is one of the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station.  It can provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be returned to the ground aboard the space shuttle. The ELM-ES will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch May 15, 2009. Photo credit: NASA/Kim Shiflett KSC-08pd2962

CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NA...

CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Kibo Experiment Logistics Module Exposed Section, or ELM-ES, is exposed after removal of the shipp... More

CAPE CANAVERAL, Fla. -- Space shuttle Atlantis soars from Launch Pad 39A at NASA's Kennedy Space Center in Florida on its STS-135 mission to the International Space Station. Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/ Kenny Allen KSC-2011-5454

CAPE CANAVERAL, Fla. -- Space shuttle Atlantis soars from Launch Pad 3...

CAPE CANAVERAL, Fla. -- Space shuttle Atlantis soars from Launch Pad 39A at NASA's Kennedy Space Center in Florida on its STS-135 mission to the International Space Station. Atlantis with its crew of four; Comm... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis' main engines and solid rocket boosters ignite on Launch Pad 39A leaving behind a billow of steam as it lifts off on its STS-135 mission to the International Space Station.    Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tony Gray and Kevin O'Connell KSC-2011-5422

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, spa...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis' main engines and solid rocket boosters ignite on Launch Pad 39A leaving behind a billow of steam as it lifts off on its... More

KENNEDY SPACE CENTER, FLA. --  After leaving the Orbiter Processing Facility bay 2,  the orbiter Endeavour, atop its transporter, rolls toward the Vehicle Assembly Building.  In the VAB, it will be stacked with the external tank and solid rocket boosters atop the mobile launcher platform for its launch on mission STS-118. The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab.  Endeavour is targeted for launch on Aug. 7.   Photo credit: NASA/Kim Shiflett KSC-07pd1709

KENNEDY SPACE CENTER, FLA. -- After leaving the Orbiter Processing Fa...

KENNEDY SPACE CENTER, FLA. -- After leaving the Orbiter Processing Facility bay 2, the orbiter Endeavour, atop its transporter, rolls toward the Vehicle Assembly Building. In the VAB, it will be stacked with... More

CAPE CANAVERAL, Fla. -- Taken from the Vehicle Assembly Building roof at NASA's Kennedy Space Center in Florida, this image shows the Press Site complex with a myriad of vehicles, satellite trucks and trailers belonging to invited guests and media for the launch of space shuttle Atlantis. Atlantis began its final flight, the STS-135 mission, to the International Space Station at 11:29 a.m. EDT on July 8.        STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Jeffrey Marino KSC-2011-5267

CAPE CANAVERAL, Fla. -- Taken from the Vehicle Assembly Building roof ...

CAPE CANAVERAL, Fla. -- Taken from the Vehicle Assembly Building roof at NASA's Kennedy Space Center in Florida, this image shows the Press Site complex with a myriad of vehicles, satellite trucks and trailers ... More

CAPE CANAVERAL, Fla. -- On a cloudy and overcast day on Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers monitor the progress of the rotating service structure (RSS) as it rolls away from space shuttle Atlantis. The RSS provides weather protection and access to the shuttle while it awaits liftoff. RSS "rollback" marks a major milestone in Atlantis' STS-135 mission countdown.      Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder KSC-2011-5131

CAPE CANAVERAL, Fla. -- On a cloudy and overcast day on Launch Pad 39A...

CAPE CANAVERAL, Fla. -- On a cloudy and overcast day on Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers monitor the progress of the rotating service structure (RSS) as it rolls away from space... More

CAPE CANAVERAL, Fla. -- Dressed in their bright-orange launch-and-entry suits, the final four astronauts to launch aboard a space shuttle exit the Astronaut Crew Quarters in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. In the left row, STS-135 Pilot Doug Hurley is followed by Mission Specialist Sandy Magnus. In the right row, Commander Chris Ferguson is followed by Mission Specialist Rex Walheim. The astronauts, who will head to Launch Pad 39A aboard the silver Astrovan, are scheduled to lift off aboard space shuttle Atlantis at 11:26 a.m. EDT on July 8 for their mission to the International Space Station.    STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the orbiting outpost. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett KSC-2011-5202

CAPE CANAVERAL, Fla. -- Dressed in their bright-orange launch-and-entr...

CAPE CANAVERAL, Fla. -- Dressed in their bright-orange launch-and-entry suits, the final four astronauts to launch aboard a space shuttle exit the Astronaut Crew Quarters in the Operations and Checkout Building... More

CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida.  The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed.        Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett KSC-2011-5368

CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket boost...

CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows a spent booster from space shuttle Atlantis' final launch, to Port Canaveral in Florida. The shuttle's two solid r... More

CAPE CANAVERAL, Fla. -- In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, launch team members monitor the countdown to the launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Above the space shuttle countdown clock are five orbiter tributes on display. The tributes feature major accomplishments and significant achievements made by each shuttle, as well as mission patches and processing milestones.              Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett KSC-2011-5278

CAPE CANAVERAL, Fla. -- In Firing Room 4 of the Launch Control Center ...

CAPE CANAVERAL, Fla. -- In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, launch team members monitor the countdown to the launch of space shuttle Atlantis on its STS-135 ... More

An STS-102 crew member reaches for the release lever for the slidewire basket, used for emergency egress from the orbiter and pad. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. On the horizon in the background can be seen the Vehicle Assembly Building. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8 KSC01pp0340

An STS-102 crew member reaches for the release lever for the slidewire...

An STS-102 crew member reaches for the release lever for the slidewire basket, used for emergency egress from the orbiter and pad. The crew is at KSC for Terminal Countdown Demonstration Test activities, which ... More

KENNEDY SPACE CENTER, FLA. -- Sitting atop the Mobile Launcher Platform, Space Shuttle Atlantis inches its way to the launch pad.  The Shuttle and MLP rest on top of the crawler-transporter beneath it, which moves about 1 mile per hour. Atlantis is scheduled for launch April 4 on mission STS-110, which will install the S0 truss, the framework that eventually will hold the power and cooling systems needed for future international research laboratories on the International Space Station.  The  Canadarm2 robotic arm will be used exclusively to hoist the 13-ton truss from the payload bay to the Station.  The S0 truss will be the first major U.S. component launched to the Station since the addition of the Quest airlock in July 2001.  The four spacewalks planned for the construction will all originate from the airlock.  The mission will be Atlantis' 25th trip to space KSC-02pd0275

KENNEDY SPACE CENTER, FLA. -- Sitting atop the Mobile Launcher Platfor...

KENNEDY SPACE CENTER, FLA. -- Sitting atop the Mobile Launcher Platform, Space Shuttle Atlantis inches its way to the launch pad. The Shuttle and MLP rest on top of the crawler-transporter beneath it, which mo... More

JOHNSON SPACE CENTER, HOUSTON -- STS123-S-001-- STS-123 continues assembly of the International Space Station (ISS).  The primary mission objectives include rotating an expedition crew member and installing both the first component of the Japanese Experimental Module (the Experimental Logistics Module - Pressurized Section [ELM-PS]) and the Canadian Special Purpose Dexterous Manipulator (SPDM). In addition, STS-123 will deliver various spare ISS components and leave behind the sensor boom used for inspecting the shuttle's thermal protection system.  A follow-on mission to ISS will utilize and then return home with this sensor boom.  A total of four spacewalks are planned to accomplish these tasks.  The mission will also require the use of both the shuttle and ISS robotic arms.  STS-123 will utilize the Station-Shuttle Power Transfer System to extend the docked portion of the mission to 11 days, with a total planned duration of 15 days.  The crew patch depicts the space shuttle in orbit with the crew names trailing behind.  STS-123's major additions to ISS (the ELM-PS installation with the shuttle robotic arm and the fully constructed SPDM) are both illustrated.  The ISS is shown in the configuration that the STS-123 crew will encounter when they arrive.  The NASA insignia design for shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize.  Public availability has been approved only in the form of illustrations by the various news media.  When and if there is any change in this policy, which is not anticipated, it will be publicly announced. KSC-08pd0363

JOHNSON SPACE CENTER, HOUSTON -- STS123-S-001-- STS-123 continues asse...

JOHNSON SPACE CENTER, HOUSTON -- STS123-S-001-- STS-123 continues assembly of the International Space Station (ISS). The primary mission objectives include rotating an expedition crew member and installing bot... More

KENNEDY SPACE CENTER, FLA. - After their arrival at the KSC Shuttle Landing Facility, the crews of mission STS-113 pause for a group photo.  From left are STS-113 Commander James Wetherbee, Pilot Paul Lockhart, and Mission Specialists Michael Lopez-Alegria and John Herrington; and the Expedition 6 crew, Flight Engineer Nikolai Budarin, Commander Ken Bowersox and Flight Engineer Donald Pettit.  Budarin represents the Russian Space Agency. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth.  In addition, the major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss.  Three spacewalks are planned to install and activate the truss and its associated equipment.  Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST. KSC-02pd1688

KENNEDY SPACE CENTER, FLA. - After their arrival at the KSC Shuttle La...

KENNEDY SPACE CENTER, FLA. - After their arrival at the KSC Shuttle Landing Facility, the crews of mission STS-113 pause for a group photo. From left are STS-113 Commander James Wetherbee, Pilot Paul Lockhart,... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis' main engines and solid rocket boosters ignite on Launch Pad 39A producing billows of smoke and steam as it lifts off on its STS-135 mission to the International Space Station.        Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tony Gray and Tom Farrar KSC-2011-5411

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, spa...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis' main engines and solid rocket boosters ignite on Launch Pad 39A producing billows of smoke and steam as it lifts off on... More

KENNEDY SPACE CENTER, FLA. -  This bird's-eye view of a high bay in the Orbiter Processing Facility (OPF) shows the open payload bay of Space Shuttle Discovery surrounded by the standard platforms and equipment required to process a Space Shuttle orbiter.  The high bay is 197 feet (60 meters) long, 150 feet (46 meters) wide, 95 feet (29 meters) high, and encompasses a 29,000-square-foot (2,694-meter) area.  The 30-ton (27-metric-ton) bridge crane (yellow device, right) has a hook height of approximately 66 feet (20 meters).  Platforms, a main access bridge, and two rolling bridges with trucks provide access to various parts of the orbiter.  In addition to routine servicing and checkout, the inspections and modifications made to enhance Discovery's performance and upgrade its systems were performed in the OPF during its recently completed Orbiter Major Modification (OMM) period.

KENNEDY SPACE CENTER, FLA. - This bird's-eye view of a high bay in th...

KENNEDY SPACE CENTER, FLA. - This bird's-eye view of a high bay in the Orbiter Processing Facility (OPF) shows the open payload bay of Space Shuttle Discovery surrounded by the standard platforms and equipment... More

CAPE CANAVERAL, Fla. -- At Launch Pad 39A at NASA's Kennedy Space Center in Florida space shuttle Atlantis is reflected in a pond near the pad after the retraction of the rotating service structure (RSS). The structure provides weather protection and access to the shuttle while it awaits liftoff on the pad. RSS retract marks a major milestone in Atlantis' STS-135 mission countdown.        Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim will lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: Jim Grossmann KSC-2011-5182

CAPE CANAVERAL, Fla. -- At Launch Pad 39A at NASA's Kennedy Space Cent...

CAPE CANAVERAL, Fla. -- At Launch Pad 39A at NASA's Kennedy Space Center in Florida space shuttle Atlantis is reflected in a pond near the pad after the retraction of the rotating service structure (RSS). The s... More

CAPE CANAVERAL, Fla. -- STS-135 Commander Chris Ferguson dons his launch-and-entry suit and helmet in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Ferguson is one of the final four astronauts to launch aboard a space shuttle. He is a retired U.S. Navy captain who already has logged nearly a month in space during two previous shuttle flights. STS-135 is scheduled to lift off aboard space shuttle Atlantis at 11:26 a.m. EDT on July 8 for a mission to the International Space Station.        STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the orbiting outpost. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett KSC-2011-5195

CAPE CANAVERAL, Fla. -- STS-135 Commander Chris Ferguson dons his laun...

CAPE CANAVERAL, Fla. -- STS-135 Commander Chris Ferguson dons his launch-and-entry suit and helmet in the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. Ferguson is one of the final... More

CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The shuttle's two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Freedom Star and Liberty Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be deserviced and stored, if needed. Atlantis began its final flight at 11:29 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also delivers the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit to the station. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett KSC-2011-5519

CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket boost...

CAPE CANAVERAL, Fla. -- Liberty Star, one of NASA's solid rocket booster retrieval ships, tows the right spent booster from space shuttle Atlantis' final launch, as it is taken to Port Canaveral in Florida. The... More

STS-102 Mission Specialists Andrew Thomas (front, left) and Paul Richards take their seats in the slidewire basket, used for emergency egress from the orbiter and pad. Behind them, other crew members climb into their basket. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown.; STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8 KSC01pp0341

STS-102 Mission Specialists Andrew Thomas (front, left) and Paul Richa...

STS-102 Mission Specialists Andrew Thomas (front, left) and Paul Richards take their seats in the slidewire basket, used for emergency egress from the orbiter and pad. Behind them, other crew members climb into... More

KENNEDY SPACE CENTER, FLA. -   Space Shuttle Atlantis approaches the runway at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station.  Main gear touchdown occurred at 11:43:40 a.m. EDT; nose gear touchdown at 11:43:48 a.m.; and wheel stop at 11:44:35 a.m.  Mission elapsed time was 10:19:58:44.  Mission STS-112 expanded the size of the Station with the addition of the S1 truss segment.  The returning crew of Atlantis are Commander Jeffrey Ashby, Pilot Pamela Melroy, and Mission Specialists David Wolf, Piers Sellers, Sandra Magnus and Fyodor Yurchikhin. This landing is the 60th at KSC in the history of the Shuttle program. KSC-02pd1581

KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis approaches the r...

KENNEDY SPACE CENTER, FLA. - Space Shuttle Atlantis approaches the runway at the Shuttle Landing Facility, completing the 4.5-million-mile journey to the International Space Station. Main gear touchdown occu... More

KENNEDY SPACE CENTER, FLA. -- The orbiter Endeavour, atop its transporter, rolls into the gaping doorway of the Vehicle Assembly Building.  In the VAB, it will be stacked with the external tank and solid rocket boosters atop the mobile launcher platform for its launch on mission STS-118.  The mission will be Endeavour's first flight in more than four years. The shuttle has undergone extensive modifications, including the addition of safety upgrades already added to shuttles Discovery and Atlantis. Endeavour also features new hardware, such as the Station-to-Shuttle Power Transfer System that will allow the docked shuttle to draw electrical power from the station and extend its visits to the orbiting lab.  Endeavour is targeted for launch on Aug. 7.   Photo credit: NASA/George Shelton KSC-07pd1707

KENNEDY SPACE CENTER, FLA. -- The orbiter Endeavour, atop its transpor...

KENNEDY SPACE CENTER, FLA. -- The orbiter Endeavour, atop its transporter, rolls into the gaping doorway of the Vehicle Assembly Building. In the VAB, it will be stacked with the external tank and solid rocket... More

CAPE CANAVERAL, Fla. -- In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, launch team members monitor the countdown to the launch of space shuttle Atlantis on its STS-135 mission to the International Space Station. Seen here is NASA Test Director Steve Payne.      Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett KSC-2011-5292

CAPE CANAVERAL, Fla. -- In Firing Room 4 of the Launch Control Center ...

CAPE CANAVERAL, Fla. -- In Firing Room 4 of the Launch Control Center at NASA's Kennedy Space Center in Florida, launch team members monitor the countdown to the launch of space shuttle Atlantis on its STS-135 ... More

KENNEDY SPACE CENTER, FLA. - As afternoon storm clouds sweep across a dune near Launch Pad 39A, Space Shuttle Endeavour is seen from the back side.  In front of it is the 290-foot-tall water tower that provides the deluge over the mobile launcher platform for sound suppression during liftoff.  The shuttle arrived at the pad in the early morning after an 8:30 p.m. rollout on July 10.  Endeavour is scheduled to launch on mission STS-118 on Aug. 7.  During the mission, Endeavour will carry into orbit the S5 truss, SPACEHAB module and external stowage platform 3. The mission is the 22nd flight to the International Space Station and will mark the first flight of Mission Specialist Barbara Morgan, the teacher-turned-astronaut whose association with NASA began more than 20 years ago.  STS-118 will be the first flight since 2002 for Endeavour, which has undergone extensive modifications, including the addition of safety upgrades already added to orbiters Discovery and Atlantis.  Photo credit: NASA/Ken Thornsley KSC-07pd1848

KENNEDY SPACE CENTER, FLA. - As afternoon storm clouds sweep across a ...

KENNEDY SPACE CENTER, FLA. - As afternoon storm clouds sweep across a dune near Launch Pad 39A, Space Shuttle Endeavour is seen from the back side. In front of it is the 290-foot-tall water tower that provides... More

CAPE CANAVERAL, Fla. -  In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers secure the work stand holding the Kibo Experiment Logistics Module Exposed Section, or ELM-ES.  The ELM-ES is one of the final components of the Japan Aerospace Exploration Agency's Kibo laboratory for the International Space Station.  It can provide payload storage space and can carry up to three payloads at launch. In addition, the ELM-ES provides a logistics function where it can be returned to the ground aboard the space shuttle. The ELM-ES will be carried aboard space shuttle Endeavour on the STS-127 mission targeted for launch May 15, 2009.  Photo credit: NASA/Kim Shiflett KSC-08pd2973

CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NA...

CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers secure the work stand holding the Kibo Experiment Logistics Module Exposed Section, or ELM-ES.... More

KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel climbs into the driver's seat of an official track vehicle at Daytona International Speedway.  Feustel is participating in NASCAR's Preseason Thunder Fan Fest at the speedway and will ride around the track, taking "hot laps" in the car.  Feustel's appearance celebrates NASA's 50th anniversary and the speedway's 50th running of the Daytona 500 in February. Besides the driving experience, Feuster will meet with fans and the media.  The NASA/NASCAR association spans decades. Technology developed for the space program has helped NASCAR drivers increase their performance and stay safe over the years. They wear cooling suits similar to what astronauts wear during a spacewalk. Foam that NASA developed for aircraft seats protects racecar drivers' necks in crashes. In addition to participating in the fan festival, NASA will fly three Daytona 500 flags aboard an upcoming space shuttle flight. Speedway officials plan to wave one of the flags to begin the 2008 installment of the Daytona 500, while another will be presented to the winning driver. NASA will keep the third.  Feustel will fly on the space shuttle mission STS-125 to the Hubble Space Telescope. The mission will extend and improve the observatory's capabilities through 2013. Launch is targeted for August 2008.  Photo credit: NASA/George Shelton KSC-08pd0015

KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel climbs into the...

KENNEDY SPACE CENTER, FLA. -- Astronaut Andrew Feustel climbs into the driver's seat of an official track vehicle at Daytona International Speedway. Feustel is participating in NASCAR's Preseason Thunder Fan F... More

KENNEDY SPACE CENTER, FLA. -- Access platforms at Launch Pad 39A are moved into position against Space Shuttle Discovery atop a mobile launch platform. Discovery arrived at its seaside launch pad around noon and was hard down at 1:15 p.m.  First motion out of the Vehicle Assembly Building was at 6:47 a.m. EDT.  Rollout is a milestone for Discovery's launch to the International Space Station on mission STS-120, targeted for Oct. 23. The crew will be delivering and installing the Italian-built U.S. Node 2, named Harmony. The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. In addition to increasing the living and working space inside the station, it also will serve as a work platform outside for the station's robotic arm.   Photo credit: NASA/George Shelton KSC-07pd2634

KENNEDY SPACE CENTER, FLA. -- Access platforms at Launch Pad 39A are m...

KENNEDY SPACE CENTER, FLA. -- Access platforms at Launch Pad 39A are moved into position against Space Shuttle Discovery atop a mobile launch platform. Discovery arrived at its seaside launch pad around noon an... More

CAPE CANAVERAL, Fla. -- On a cloudy and overcast day on Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers prepare to roll the rotating service structure (RSS) away from space shuttle Atlantis. The RSS provides weather protection and access to the shuttle while it awaits liftoff. RSS "rollback" marks a major milestone in Atlantis' STS-135 mission countdown.          Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder KSC-2011-5122

CAPE CANAVERAL, Fla. -- On a cloudy and overcast day on Launch Pad 39A...

CAPE CANAVERAL, Fla. -- On a cloudy and overcast day on Launch Pad 39A at NASA's Kennedy Space Center in Florida, workers prepare to roll the rotating service structure (RSS) away from space shuttle Atlantis. T... More

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis' main engines and solid rocket boosters ignite on Launch Pad 39A producing billows of smoke and steam as it lifts off on its STS-135 mission to the International Space Station.    Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Sandra Joseph and Kevin O'Connell KSC-2011-5351

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, spa...

CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, space shuttle Atlantis' main engines and solid rocket boosters ignite on Launch Pad 39A producing billows of smoke and steam as it lifts off on... More

CAPE CANAVERAL, Fla. -- Employees check out space shuttle Atlantis after it was uncovered on Launch Pad 39A at NASA's Kennedy Space Center in Florida following the move of the rotating service structure (RSS). The structure provides weather protection and access to the shuttle while it awaits liftoff on the pad. RSS "rollback" marks a major milestone in Atlantis' STS-135 mission countdown.        Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim, are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Troy Cryder KSC-2011-5147

CAPE CANAVERAL, Fla. -- Employees check out space shuttle Atlantis aft...

CAPE CANAVERAL, Fla. -- Employees check out space shuttle Atlantis after it was uncovered on Launch Pad 39A at NASA's Kennedy Space Center in Florida following the move of the rotating service structure (RSS). ... More

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour, atop the mobile launcher platform, is hard down on Launch Pad 39A after rolling out overnight.  First motion out of the Vehicle Assembly Building was at 8:10 p.m.  July 10.  The components of the shuttle are, first, the orbiter and then the solid rocket boosters flanking the external tank behind it.  To the left of the shuttle is the rotating service structure, which can be rolled around to enclose the vehicle for access during processing.  Behind it is the fixed service structure, topped by an 80-foot-tall lightning mast.  Extending from it to Endeavour is the orbiter access arm, which provides access into the vehicle. Endeavour is scheduled to launch on mission STS-118 on Aug. 7.  During the mission, Endeavour will carry into orbit the S5 truss, SPACEHAB module and external stowage platform 3. The mission is the 22nd flight to the International Space Station and will mark the first flight of Mission Specialist Barbara Morgan, the teacher-turned-astronaut whose association with NASA began more than 20 years ago.  STS-118 will be the first flight since 2002 for Endeavour, which has undergone extensive modifications, including the addition of safety upgrades already added to orbiters Discovery and Atlantis.  Photo credit: NASA/Ken Thornsley KSC-07pd1852

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour, atop the mobile...

KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour, atop the mobile launcher platform, is hard down on Launch Pad 39A after rolling out overnight. First motion out of the Vehicle Assembly Building was at 8:... More

KENNEDY SPACE CENTER, FLA.  - In the Orbiter Processing Facility, workers are installing wiring in Discovery’s cargo bay that will support the addition of an Orbiter Boom Sensor System (OBSS) .  The OBSS is one of the new safety measures for Return to Flight, equipping the Shuttle with cameras and laser systems to inspect the Shuttle’s Thermal Protection System while in space.  Discovery is designated as the Return to Flight vehicle for mission STS-114, no earlier than March 2005. KSC-04pd1282

KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, work...

KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers are installing wiring in Discovery’s cargo bay that will support the addition of an Orbiter Boom Sensor System (OBSS) . The OBSS is one... More

At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related  facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken October 26, 1962, depicts the excavation process of the single engine F-1 stand. n/a

At its founding, the Marshall Space Flight Center (MSFC) inherited the...

At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, th... More

At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related  facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This photo, taken November 15, 1962, depicts the excavation process of the single engine F-1 stand site. n/a

At its founding, the Marshall Space Flight Center (MSFC) inherited the...

At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, th... More

At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This aerial photograph, taken January 15, 1963 gives an overall view of the construction progress of the newly developed test complex. The large white building located in the center is the Block House. Just below and to the right of it is the S-IC test stand. The large hole to the left of the S-IC stand is the F-1 test stand site. n/a

At its founding, the Marshall Space Flight Center (MSFC) inherited the...

At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, th... More

At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F-1 stand is keyed into the bedrock approximately 40 feet below grade. This aerial photograph, taken January 15, 1963, gives a close overall view of the newly developed test complex. Depicted in the forefront center is the S-IC test stand with towers prominent, the Block House is seen in the center just above the S-IC test stand, and the large hole to the left, located midway between the two is the F-1 test stand site. n/a

At its founding, the Marshall Space Flight Center (MSFC) inherited the...

At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, th... More

CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to design an addition to the facility, which wrapped around the east, north, and most of the west and south sides.           The Mercury Mission Control Center in Florida played a key role in the United States' early spaceflight program. Located at Cape Canaveral Air Force Station, the original part of the building was constructed between 1956 and 1958, with additions in 1959 and 1963. The facility officially was transferred to NASA on Dec. 26, 1963, and served as mission control during all the Project Mercury missions, as well as the first three flights of the Gemini Program, when it was renamed Mission Control Center. With its operational days behind, on June 1, 1967, the Mission Control Center became a stop on the public tour of NASA facilities until the mid-90s. In 1999, much of the equipment and furnishings from the Flight Control Area were moved to the Kennedy Space Center Visitor Complex where they became part of the exhibit there. The building was demolished in spring 2010. Photo credit: NASA KSC-LOC-63-1017

CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Cent...

CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to desi... More

CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to design an addition to the facility, which wrapped around the east, north, and most of the west and south sides.           The Mercury Mission Control Center in Florida played a key role in the United States' early spaceflight program. Located at Cape Canaveral Air Force Station, the original part of the building was constructed between 1956 and 1958, with additions in 1959 and 1963. The facility officially was transferred to NASA on Dec. 26, 1963, and served as mission control during all the Project Mercury missions, as well as the first three flights of the Gemini Program, when it was renamed Mission Control Center. With its operational days behind, on June 1, 1967, the Mission Control Center became a stop on the public tour of NASA facilities until the mid-90s. In 1999, much of the equipment and furnishings from the Flight Control Area were moved to the Kennedy Space Center Visitor Complex where they became part of the exhibit there. The building was demolished in spring 2010. Photo credit: NASA KSC-LOC-63-1971

CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Cent...

CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to desi... More

CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to design an addition to the facility, which wrapped around the east, north, and most of the west and south sides.           The Mercury Mission Control Center in Florida played a key role in the United States' early spaceflight program. Located at Cape Canaveral Air Force Station, the original part of the building was constructed between 1956 and 1958, with additions in 1959 and 1963. The facility officially was transferred to NASA on Dec. 26, 1963, and served as mission control during all the Project Mercury missions, as well as the first three flights of the Gemini Program, when it was renamed Mission Control Center. With its operational days behind, on June 1, 1967, the Mission Control Center became a stop on the public tour of NASA facilities until the mid-90s. In 1999, much of the equipment and furnishings from the Flight Control Area were moved to the Kennedy Space Center Visitor Complex where they became part of the exhibit there. The building was demolished in spring 2010. Photo credit: NASA KSC-LOC-63-5635

CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Cent...

CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to desi... More

CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to design an addition to the facility, which wrapped around the east, north, and most of the west and south sides.           The Mercury Mission Control Center in Florida played a key role in the United States' early spaceflight program. Located at Cape Canaveral Air Force Station, the original part of the building was constructed between 1956 and 1958, with additions in 1959 and 1963. The facility officially was transferred to NASA on Dec. 26, 1963, and served as mission control during all the Project Mercury missions, as well as the first three flights of the Gemini Program, when it was renamed Mission Control Center. With its operational days behind, on June 1, 1967, the Mission Control Center became a stop on the public tour of NASA facilities until the mid-90s. In 1999, much of the equipment and furnishings from the Flight Control Area were moved to the Kennedy Space Center Visitor Complex where they became part of the exhibit there. The building was demolished in spring 2010. Photo credit: NASA KSC-LOC-63-5674

CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Cent...

CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to desi... More

Aerial view of Gasdynamics facility in 1964 and the 20 inch helium tunnel Part of the Thermal Protection Laboratory used to research materials for heat shield applications and for aerodynamic heating and materials studies of vehicles in planetary atmospheres.  This laboratory is comprised of five separate facilities: an Aerodynamic Heating Tunnel,  a Heat Transfer Tunnel, two Supersonic Turbulent Ducts, and a High-Power CO2 Gasdynamic Laser. All these facilities are driven by arc-heaters, with the exception of the large, combustion-type laser.  The arc-heated facilities are powered by a 20 Megawatt DC power supply. Their effluent gas stream (test gases; Air, N2, He, CO2 and mixtures; flow rates from 0.05 to 5.0 lbs/sec) discharges into a five-stage stream-ejector-driven vacuum system. The vacuum system and power supply are common to the test faciities in building N-238. All of the facilities have high pressure water available at flow rates up to 4, 000 gals/min. The data obtained from these facilities are recorded on magnetic tape or oscillographs. All forms of data can be handled whether from thermo-couples, pressure cells, pyrometers, or radiometers, etc. in addition, closed circuit T. V. monitors and various film cameras are available. (operational since 1962) ARC-1964-A-33038-22

Aerial view of Gasdynamics facility in 1964 and the 20 inch helium tun...

Aerial view of Gasdynamics facility in 1964 and the 20 inch helium tunnel Part of the Thermal Protection Laboratory used to research materials for heat shield applications and for aerodynamic heating and materi... More

CAPE CANAVERAL, Fla. -- High above the skies at NASA's Kennedy Space Center in Florida a Coast Guard helicopter keeps watch on and around the Atlantic Ocean including space shuttle Atlantis on its seaside launch pad awaiting liftoff on its STS-135 mission.        Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: Ken Thornsley KSC-2011-5443

CAPE CANAVERAL, Fla. -- High above the skies at NASA's Kennedy Space C...

CAPE CANAVERAL, Fla. -- High above the skies at NASA's Kennedy Space Center in Florida a Coast Guard helicopter keeps watch on and around the Atlantic Ocean including space shuttle Atlantis on its seaside launc... More

KENNEDY SPACE CENTER, FLA. -    In the turn basin near the NASA News Center swims a large fish, perhaps witness to the arrival today of the external fuel tank  that will launch Space Shuttle Atlantis on the next shuttle mission, STS-115. The tank, designated ET-118, was shipped from the Michoud Assembly Facility in New Orleans.  The area is part of the Merritt Island National Wildlife Refuge, which shares a boundary with the center.  The wildlife refuge is a habitat for more than 117 fishes, as well as 310 species of birds, 25 mammals and 65 amphibians and reptiles. In addition, the Refuge supports 19 endangered or threatened wildlife species on Federal or State lists, more than any other single refuge in the U.S.  Photo credit: NASA/Kim Shiflett KSC-06pd1020

KENNEDY SPACE CENTER, FLA. - In the turn basin near the NASA News C...

KENNEDY SPACE CENTER, FLA. - In the turn basin near the NASA News Center swims a large fish, perhaps witness to the arrival today of the external fuel tank that will launch Space Shuttle Atlantis on the nex... More

KENNEDY SPACE CENTER, FLA. --  Standing next to the nose of Atlantis, returned from its successful mission STS-110 to the International Space Station, Commander Michael Bloomfield talks with NASA Administrator Sean O'Keefe. Atlantis landed on KSC's Shuttle Landing Facility after 171 orbits, completing a 10-day, 19-hour, 4.5-million mile journey. Main gear touchdown was 12:26:57 p.m. EDT, nose gear touchdown was 12:27:09 p.m. and wheel stop was 12:28:07 p.m.  The crew delivered and installed the S0 truss, which will support cooling and power systems essential for the addition of future international laboratories, on the Station KSC-02pd0523

KENNEDY SPACE CENTER, FLA. -- Standing next to the nose of Atlantis, ...

KENNEDY SPACE CENTER, FLA. -- Standing next to the nose of Atlantis, returned from its successful mission STS-110 to the International Space Station, Commander Michael Bloomfield talks with NASA Administrator ... More

KENNEDY SPACE CENTER, FLA. --  Viewed from behind inside the Vehicle Assembly Building, space shuttle Discovery is lifted into the upper regions for transfer to high bay 1.  In the bay, Discovery will be mated with the external tank and solid rocket boosters waiting on the mobile launcher platform. Discovery is targeted for launch to the International Space Station for mission STS-120 on Oct. 23.  The crew will be delivering and installing the Italian-built U.S. Node 2, named Harmony.  The pressurized module will act as an internal connecting port and passageway to additional international science labs and cargo spacecraft. In addition to increasing the living and working space inside the station, it also will serve as a work platform outside for the station's robotic arm.  Photo credit: NASA/Troy Cryder KSC-07pd2553

KENNEDY SPACE CENTER, FLA. -- Viewed from behind inside the Vehicle A...

KENNEDY SPACE CENTER, FLA. -- Viewed from behind inside the Vehicle Assembly Building, space shuttle Discovery is lifted into the upper regions for transfer to high bay 1. In the bay, Discovery will be mated ... More

KENNEDY SPACE CENTER, FLA. -- Near sunset, Space Shuttle Endeavour, atop the mobile launcher platform, begins moving through the doors of the Vehicle Assembly Building for rollout to Launch Pad 39A. First motion out of the VAB was at 8:10 p.m.  July 10, and the shuttle was hard down on the pad at 3:02 a.m. July 11.  Seen below the orbiter's wings and attached to the launcher platform are the tail masts, which provide several umbilical connections to the orbiter, including a liquid-oxygen line through one and a liquid-hydrogen line through another.  Endeavour is scheduled to launch on mission STS-118 on Aug. 7.  During the mission, Endeavour will carry into orbit the S5 truss, SPACEHAB module and external stowage platform 3. The mission is the 22nd flight to the International Space Station and will mark the first flight of Mission Specialist Barbara Morgan, the teacher-turned-astronaut whose association with NASA began more than 20 years ago.  STS-118 will be the first flight since 2002 for Endeavour, which has undergone extensive modifications, including the addition of safety upgrades already added to orbiters Discovery and Atlantis.  Photo credit: NASA/Tom Farrar KSC-07pd1853

KENNEDY SPACE CENTER, FLA. -- Near sunset, Space Shuttle Endeavour, at...

KENNEDY SPACE CENTER, FLA. -- Near sunset, Space Shuttle Endeavour, atop the mobile launcher platform, begins moving through the doors of the Vehicle Assembly Building for rollout to Launch Pad 39A. First motio... More

CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, space shuttle Atlantis travels upward on streams of flame as it lifts off on its STS-135 mission to the International Space Station.          Atlantis with its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim, lifted off at 11:29 a.m. EDT on July 8, 2011 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Tony Gray and Tom Farrar KSC-2011-5414

CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Cent...

CAPE CANAVERAL, Fla. -- On Launch Pad 39A at NASA's Kennedy Space Center in Florida, space shuttle Atlantis travels upward on streams of flame as it lifts off on its STS-135 mission to the International Space S... More

KENNEDY SPACE CENTER, FLA. - Sitting atop the Mobile Launcher Platform, Space Shuttle Atlantis towers above the workers aboard.  The Shuttle and MLP rest on top of the crawler-transporter beneath it, which moves about 1 mile per hour. Atlantis is scheduled for launch April 4 on mission STS-110, which will install the S0 truss, the framework that eventually will hold the power and cooling systems needed for future international research laboratories on the International Space Station.  The  Canadarm2 robotic arm will be used exclusively to hoist the 13-ton truss from the payload bay to the Station.  The S0 truss will be the first major U.S. component launched to the Station since the addition of the Quest airlock in July 2001.  The four spacewalks planned for the construction will all originate from the airlock.  The mission will be Atlantis' 25th trip to space KSC-02pd0274

KENNEDY SPACE CENTER, FLA. - Sitting atop the Mobile Launcher Platform...

KENNEDY SPACE CENTER, FLA. - Sitting atop the Mobile Launcher Platform, Space Shuttle Atlantis towers above the workers aboard. The Shuttle and MLP rest on top of the crawler-transporter beneath it, which move... More

The cylindrical projections of Jupiter, representing both Voyager 1 (top) and Voyager 2 (bottom), are presented in this comparison.  The top picture extends 400 degrees longitude to 0 degrees (right edge).  It is aligned with the lower image so that the longitude scale is correct for both frames.  The comparison between the pictures shows the relative motions of features in Jupiter's atmosphere.  It can be seen that the Great Red Spot has moved westward and the white oval features eastward during the time between the acquisition of these pictures.  Regulare plume patterns are equidistant around the northern edge of the equator, while a train of small spots has moved eastward at approxiamately 80 degrees south latitude.  In addition to these relative motions, significant changes are evident in the recirculation flow east of the Great Red Spot, in the disturbed region west of the Greast Red Spot, and as seen in the brightening of material spreading into the equatorial region from the more southerly latitudes. ARC-1979-A79-7098

The cylindrical projections of Jupiter, representing both Voyager 1 (t...

The cylindrical projections of Jupiter, representing both Voyager 1 (top) and Voyager 2 (bottom), are presented in this comparison. The top picture extends 400 degrees longitude to 0 degrees (right edge). It ... More

The cylindrical projections of Jupiter, representing both Voyager 1 (top) and Voyager 2 (bottom), are presented in this comparison.  The top picture extends 400 degrees longitude to 0 degrees (right edge).  It is aligned with the lower image so that the longitude scale is correct for both frames.  The comparison between the pictures shows the relative motions of features in Jupiter's atmosphere.  It can be seen that the Great Red Spot has moved westward and the white oval features eastward during the time between the acquisition of these pictures.  Regulare plume patterns are equidistant around the northern edge of the equator, while a train of small spots has moved eastward at approxiamately 80 degrees south latitude.  In addition to these relative motions, significant changes are evident in the recirculation flow east of the Great Red Spot, in the disturbed region west of the Greast Red Spot, and as seen in the brightening of material spreading into the equatorial region from the more southerly latitudes. ARC-1979-AC79-7098

The cylindrical projections of Jupiter, representing both Voyager 1 (t...

The cylindrical projections of Jupiter, representing both Voyager 1 (top) and Voyager 2 (bottom), are presented in this comparison. The top picture extends 400 degrees longitude to 0 degrees (right edge). It ... More

Range : 9.1 million miles (5.7 million miles) P-29478C These two images pictures of Uranus, one in true color and the other in false color, were shot by Voyager 2's  narrow angle camera. The picture at left has been processed  to show Uranus as the human eye would see from the vantage point of the spacecraft. The image is a composite of shots taken through blue, green, and orange filters. The darker shadings on the upper right of the disk correspond to day-night boundaries on the planet. Beyond this boundary lies the hidden northern hemisphere of Uranus, which currently remains in total darkness as the planet rotates. The blue-green color results from the aborption of red light  by methane gas  in Uranus' deep, cold, and remarkably clear atmosphere. The picture at right uses false color and extreme contrast to bring out subtle details in the polar region of Uranus. Images obtained through ultraviolet, violet, and orange filters were respectively converted to the same  blue, green, and red colors used to produce the picture at left. The very slight contrasts visible in true color are greatly exaggerated here. In this false colr picture, Uranus reveals a dark polar hood surrounded by aseries of progressively lighter concentric bands. One possible explanation is that a brownish haze or smog, concentrated around the pole, is arranged into bands of zonal motions of the upper atmosphere. Several artifacts of the optics and processing are visible. The occasional donut shapes are shadows cast by dust in the camera optics;the processing needed to bring ot faint features also bring out camera blemishes. in addition, the bright pink strip at the lower edge of the planets limb is an artifact of the image enhancement. In fact, the limb is dark and uniform in color around the planet. ARC-1986-AC86-7009

Range : 9.1 million miles (5.7 million miles) P-29478C These two image...

Range : 9.1 million miles (5.7 million miles) P-29478C These two images pictures of Uranus, one in true color and the other in false color, were shot by Voyager 2's narrow angle camera. The picture at left has... More

P-29509 C Range: 500,000 kilometers (300,000 miles) This high-resolution color composite of Titania was made as Voyager 2 neared its closest approach to Uranus. Voyager's narrow-angle camera acquired this image  through the violet and clear filters and shows details about 9 km (6 mi) in size. Titania has a diameter of about 1,600 km (1,000 MI). In addition to many scars due to impacts, Titania displays evidence of other geologic activity at some point in its history. The large trench-like feature near the terminator (day-night boundary) at middle right suggests at least one episode of tectonic activity, Another, basinlike structure near the upper right is evidence of an ancient period of heavy impact activity. The neutral gray color of Titania is characteristic of the Uranian satellites as a whole. ARC-1986-AC86-7025

P-29509 C Range: 500,000 kilometers (300,000 miles) This high-resoluti...

P-29509 C Range: 500,000 kilometers (300,000 miles) This high-resolution color composite of Titania was made as Voyager 2 neared its closest approach to Uranus. Voyager's narrow-angle camera acquired this image... More

P-29509 BW Range: 500,000 kilometers (300,000 miles) This high-resolution image of Titania was made as Voyager 2 neared its closest approach to Uranus. Voyager's narrow-angle camera acquired this image  through the violet and clear filters and shows details about 9 km (6 mi) in size. Titania has a diameter of about 1,600 km (1,000 MI). In addition to many scars due to impacts, Titania displays evidence of other geologic activity at some point in its history. The large trench-like feature near the terminator (day-night boundary) at middle right suggests at least one episode of tectonic activity, Another, basinlike structure near the upper right is evidence of an ancient period of heavy impact activity. The neutral gray color of Titania is characteristic of the Uranian satellites as a whole. ARC-1986-A86-7025

P-29509 BW Range: 500,000 kilometers (300,000 miles) This high-resolut...

P-29509 BW Range: 500,000 kilometers (300,000 miles) This high-resolution image of Titania was made as Voyager 2 neared its closest approach to Uranus. Voyager's narrow-angle camera acquired this image through... More

STS-68 radar image: Mt. Rainier, Washington

STS-68 radar image: Mt. Rainier, Washington

STS068-S-052 (3 October 1994) --- This is a radar image of Mount Rainier in Washington state. The volcano last erupted about 150 years ago and numerous large floods and debris flows have originated on its slop... More

International Space Station (ISS)

International Space Station (ISS)

This computer generated scene of the International Space Station (ISS) represents the first addition of hardware following the completion of Phase II. The 8-A Phase shows the addition of the S-9 truss.

STS-85 Pilot Kent V. Rominger is assisted with his ascent/reentry flight suit in the Operations and Checkout (O&C) Building. He is a commander in the Navy and is on his third Shuttle mission. Rominger previously flew in this capacity on STS-73 and STS-80. He holds a master’s degree in aeronautical engineering and has more than 4,500 hours of flight time and 685 carrier landings. Rominger will assist Commander Curtis L. Brown, Jr. with all phases of the space flight and during the test of International Space Station rendezvous procedures during the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 (CRISTA-SPAS-2) free-flyer retrieval. He will also be busy with the many and varied tasks associated with monitoring and maintaining the orbiter. In addition, Rominger will operate the Solid Surface Combustion Middeck Experiment. The primary payload aboard the Space Shuttle orbiter Discovery is the CRISTA-SPAS-2. Other payloads on the 11-day mission include the Manipulator Flight Demonstration (MFD), and Technology Applications and Science-1 (TAS-1) and International Extreme Ultraviolet Hitchhiker-2 (IEH-2) experiments KSC-97PC1195

STS-85 Pilot Kent V. Rominger is assisted with his ascent/reentry flig...

STS-85 Pilot Kent V. Rominger is assisted with his ascent/reentry flight suit in the Operations and Checkout (O&C) Building. He is a commander in the Navy and is on his third Shuttle mission. Rominger previousl... More

Technicians at the SPACEHAB Payload Processing Facility in Cape Canaveral prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-86, slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. The last-minute cargo addition requested by the Russians will be mounted on the aft bulkhead of the SPACEHAB Double Module, which is being used as a pressurized cargo container for science/logistical equipment and supplies that will be exchanged between Atlantis and the Mir. Using the Module Vertical Access Kit (MVAC), technicians will be lowered inside the module to install the computer for flight. Liftoff of STS-86 is scheduled Sept. 25 at 10:34 p.m. from Launch Pad 39A KSC-97PC1404

Technicians at the SPACEHAB Payload Processing Facility in Cape Canave...

Technicians at the SPACEHAB Payload Processing Facility in Cape Canaveral prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-... More

Boeing technicians, from right, John Pearce Jr., Mike Vawter and Rob Ferraro prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-86, slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. The preparations are being made at the SPACEHAB Payload Processing Facility in Cape Canaveral. The last-minute cargo addition requested by the Russians will be mounted on the aft bulkhead of the SPACEHAB Double Module, which is being used as a pressurized cargo container for science/logistical equipment and supplies that will be exchanged between Atlantis and the Mir. Using the Module Vertical Access Kit (MVAC), technicians will be lowered inside the module to install the computer for flight. Liftoff of STS-86 is scheduled Sept. 25 at 10:34 p.m. from Launch Pad 39A KSC-97PC1406

Boeing technicians, from right, John Pearce Jr., Mike Vawter and Rob F...

Boeing technicians, from right, John Pearce Jr., Mike Vawter and Rob Ferraro prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission S... More

Boeing technicians John Pearce Jr., at left, and Mike Vawter prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-86, slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. The preparations are being made at the SPACEHAB Payload Processing Facility in Cape Canaveral. The last-minute cargo addition requested by the Russians will be mounted on the aft bulkhead of the SPACEHAB Double Module, which is being used as a pressurized cargo container for science/logistical equipment and supplies that will be exchanged between Atlantis and the Mir. Using the Module Vertical Access Kit (MVAC), technicians will be lowered inside the module to install the computer for flight. Liftoff of STS-86 is scheduled Sept. 25 at 10:34 p.m. from Launch Pad 39A KSC-97PC1405

Boeing technicians John Pearce Jr., at left, and Mike Vawter prepare a...

Boeing technicians John Pearce Jr., at left, and Mike Vawter prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-86, slated to... More

Celebrating the official opening of the new International Space Station (ISS) Center at Kennedy Space Center are, left to right, James Ball, chief, NASA Public Services, KSC; KSC Director Roy D. Bridges Jr.; Hugh Harris, director, NASA Public Affairs, KSC; and Rick Abramson, president and chief operating officer, Delaware North Parks Services of Spaceport Inc. Center Director Bridges cuts the ribbon to the new tour attraction where full-scale mockups of station modules, through which visitors can walk, are on display. These include the Habitation Unit, where station crew members will live, sleep, and work; a Laboratory Module; and the Pressurized Logistics Module, where racks and supplies will be transported back and forth from KSC to space. Guests also can take an elevated walkway to a gallery overlooking the work are where actual ISS hardware is prepared for flight into space. This new tour site, in addition to a new Launch Complex 39 Observation Gantry, are part of a comprehensive effort by NASA and Delaware North to expand and improve the KSC public tour and visitor facilities KSC-98pc156

Celebrating the official opening of the new International Space Statio...

Celebrating the official opening of the new International Space Station (ISS) Center at Kennedy Space Center are, left to right, James Ball, chief, NASA Public Services, KSC; KSC Director Roy D. Bridges Jr.; Hu... More

Retired Astronaut John Blaha celebrates the official opening of the new International Space Station (ISS) Center at Kennedy Space Center as he steps out of a full-scale mockup of one of the station modules. Modules through which visitors can walk that are included in the new tour attraction are the Habitation Unit, where station crew members will live, sleep, and work; a Laboratory Module; and the Pressurized Logistics Module, where racks and supplies will be transported back and forth from KSC to space. Guests also can take an elevated walkway to a gallery overlooking the work area where actual ISS hardware is prepared for flight into space. This new tour site, in addition to a new Launch Complex 39 Observation Gantry, are part of a comprehensive effort by NASA and Delaware North to expand and improve the KSC public tour and visitor facilities KSC-98pc157

Retired Astronaut John Blaha celebrates the official opening of the ne...

Retired Astronaut John Blaha celebrates the official opening of the new International Space Station (ISS) Center at Kennedy Space Center as he steps out of a full-scale mockup of one of the station modules. Mod... More

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc256

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touc...

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5... More

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc248

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touc...

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5... More

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc250

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touc...

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5... More

KENNEDY SPACE CENTER, FLA. -- STS-89 Commander Terrence Wilcutt, at left, shakes hands with Pilot Joe Edwards Jr. under the orbiter Endeavour after it landed on Runway 15 at KSC’s Shuttle Landing Facility Jan. 31. Kneeling in front of the wheel of the orbiter's nose, the commander and pilot congratulate each other on a perfect alignment of the wheel down the center of the runway. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the orbiter with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Wilcutt; Pilot Edwards; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov of the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc259

KENNEDY SPACE CENTER, FLA. -- STS-89 Commander Terrence Wilcutt, at le...

KENNEDY SPACE CENTER, FLA. -- STS-89 Commander Terrence Wilcutt, at left, shakes hands with Pilot Joe Edwards Jr. under the orbiter Endeavour after it landed on Runway 15 at KSC’s Shuttle Landing Facility Jan. ... More

NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian Space Station Mir since late September 1997, greets his friend, Tammy Kruse, shortly after his return to Earth on Jan. 31. Dr. Wolf returned aboard the orbiter Endeavour with the rest of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded Dr. Wolf on Mir and is scheduled to remain on the Russian space station until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc261

NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the...

NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian Space Station Mir since late September 1997, greets his friend, Tammy Kruse, shortly after his return to Earth on Jan. 31. Dr. Wolf... More

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-398d1fr09

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the K...

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 19... More

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc249

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touc...

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5... More

KENNEDY SPACE CENTER, FLA. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts. KSC-98pasts89-2

KENNEDY SPACE CENTER, FLA. -- The Space Shuttle orbiter Endeavour touc...

KENNEDY SPACE CENTER, FLA. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5... More

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc252

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touc...

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5... More

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-pasts89-2

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the K...

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 19... More

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc247

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touc...

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5... More

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-398d1fr06

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the K...

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 19... More

KENNEDY SPACE CENTER, FLA. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pasts89-1

KENNEDY SPACE CENTER, FLA. -- The Space Shuttle orbiter Endeavour touc...

KENNEDY SPACE CENTER, FLA. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5... More

KENNEDY SPACE CENTER, FLA. -- STS-89 crew members give a "thumbs up" on KSC’s Runway 15 following completion of their successful mission that lasted nearly nine days. From left are Pilot Joe Edwards Jr.; Commander Terrence Wilcutt; and Mission Specialists Bonnie Dunbar, Ph.D.; Michael Anderson; Salizhan Sharipov of the Russian Space Agency; and James Reilly, Ph.D. Not shown are Mission Specialist Andrew Thomas, Ph.D., and returning astronaut and Mir 24 crew member David Wolf, M.D. STS-89 was the eighth docking of the Space Shuttle with the Russian Space Station Mir. Dr. Thomas succeeded Dr. Wolf on Mir, who has been on the Russian space station since late September. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc257

KENNEDY SPACE CENTER, FLA. -- STS-89 crew members give a "thumbs up" o...

KENNEDY SPACE CENTER, FLA. -- STS-89 crew members give a "thumbs up" on KSC’s Runway 15 following completion of their successful mission that lasted nearly nine days. From left are Pilot Joe Edwards Jr.; Comman... More

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-398d1fr03

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the K...

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 19... More

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc255

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touc...

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5... More

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc254

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touc...

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5... More

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-pasts89-1

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the K...

The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 19... More

KENNEDY SPACE CENTER, FLA. -- The orbiter Endeavour closes the day peacefully on KSC's Shuttle Landing Facility Runway 15, completing the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc260

KENNEDY SPACE CENTER, FLA. -- The orbiter Endeavour closes the day pea...

KENNEDY SPACE CENTER, FLA. -- The orbiter Endeavour closes the day peacefully on KSC's Shuttle Landing Facility Runway 15, completing the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. ... More

NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian Space Station Mir since late September 1997, greets his friend, Tammy Kruse, shortly after his return to Earth on Jan. 31. Dr. Wolf returned aboard the orbiter Endeavour with the rest of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded Dr. Wolf on Mir and is scheduled to remain on the Russian space station until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc262

NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the...

NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian Space Station Mir since late September 1997, greets his friend, Tammy Kruse, shortly after his return to Earth on Jan. 31. Dr. Wolf... More

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc251

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touc...

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5... More

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5:35:09 p.m. EST on Jan. 31, 1998. The wheels stopped at 5:36:19 EST, completing a total mission time of eight days, 19 hours, 48 minutes and four seconds. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc253

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touc...

KENNEDY SPACE CENTER, Fla. -- The Space Shuttle orbiter Endeavour touches down on Runway 15 of the KSC Shuttle Landing Facility (SLF) to complete the nearly nine-day STS-89 mission. Main gear touchdown was at 5... More

KENNEDY SPACE CENTER, FLA. -- STS-89 Mission Specialist Bonnie Dunbar, Ph.D., at left, discusses the mission with Mission Specialist Salizhan Sharipov of the Russian Space Agency under the orbiter Endeavour after it landed on Runway 15 at KSC’s Shuttle Landing Facility Jan. 31. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the orbiter with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Dr. Dunbar; and Sharipov. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-98pc258

KENNEDY SPACE CENTER, FLA. -- STS-89 Mission Specialist Bonnie Dunbar,...

KENNEDY SPACE CENTER, FLA. -- STS-89 Mission Specialist Bonnie Dunbar, Ph.D., at left, discusses the mission with Mission Specialist Salizhan Sharipov of the Russian Space Agency under the orbiter Endeavour aft... More

NASA astronaut and Mir 24 crew member David Wolf, M.D., enjoys a moment with the media at the Skid Strip at Cape Canaveral Air Station on Feb. 1 moments before his departure for Johnson Space Center. Other STS-89 crew members surrounding Dr. Wolf include, left to right, Pilot Joe Edwards Jr.; Commander Terrence Wilcutt; and Mission Specialist Bonnie Dunbar, Ph.D. In the red shirt behind Edwards is JSC Director of Flight Crew Operations David Leestma. The STS-89 crew that brought Dr. Wolf back to Earth arrived at KSC aboard the orbiter Endeavour Jan. 31, concluding the eighth Shuttle-Mir docking mission. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded Dr. Wolf on Mir and is scheduled to remain on the Russian space station until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-pa-wolf-17

NASA astronaut and Mir 24 crew member David Wolf, M.D., enjoys a momen...

NASA astronaut and Mir 24 crew member David Wolf, M.D., enjoys a moment with the media at the Skid Strip at Cape Canaveral Air Station on Feb. 1 moments before his departure for Johnson Space Center. Other STS-... More

NASA astronaut and Mir 24 crew member David Wolf, M.D., enjoys a moment with the media at the Skid Strip at Cape Canaveral Air Station on Feb. 1 moments before his departure for Johnson Space Center. The STS-89 crew that brought Dr. Wolf back to Earth arrived at KSC aboard the orbiter Endeavour Jan. 31, concluding the eighth Shuttle-Mir docking mission. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded Dr. Wolf on Mir and is scheduled to remain on the Russian space station until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts KSC-pa-wolf-09

NASA astronaut and Mir 24 crew member David Wolf, M.D., enjoys a momen...

NASA astronaut and Mir 24 crew member David Wolf, M.D., enjoys a moment with the media at the Skid Strip at Cape Canaveral Air Station on Feb. 1 moments before his departure for Johnson Space Center. The STS-89... More

The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, awaits processing in KSC's Space Station Processing Facility (SSPF). The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc300

The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 m...

The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, awaits processing in KSC's Space Station Processing Facility (SSP... More

Workers in KSC's Space Station Processing Facility (SSPF) assist in removing the protective casing from the Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999. The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc299

Workers in KSC's Space Station Processing Facility (SSPF) assist in re...

Workers in KSC's Space Station Processing Facility (SSPF) assist in removing the protective casing from the Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard S... More

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is moved to its workstand for processing in KSC's Space Station Processing Facility (SSPF). The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc301

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a...

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is moved to its workstand for proce... More

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for processing in KSC's Space Station Processing Facility (SSPF). The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc303

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a...

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for p... More

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for processing in KSC's Space Station Processing Facility (SSPF). The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc305

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a...

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for p... More

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for processing in KSC's Space Station Processing Facility (SSPF). The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc302

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a...

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for p... More

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is moved toward its workstand for processing in KSC's Space Station Processing Facility (SSPF). The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc306

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a...

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is moved toward its workstand for p... More

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for processing in KSC's Space Station Processing Facility (SSPF). The Z-1 truss supports the staged buildup of International Space Station (ISS) on this third scheduled flight for ISS. The Z1 truss allows the temporary installation of the U.S. power module to Node 1. Early in the assembly sequence, the purpose of Z1 is to provide a mounting location for Ku-band and S-band telemetry and extravehicular activity (EVA) equipment. It also provides common berthing mechanism hardcover stowage. In addition, it will assist with the execution of nonpropulsive attitude control. The truss arrived at KSC on Feb. 17 for preflight processing in the SSPF KSC-98pc304

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a...

KENNEDY SPACE CENTER, FLA. -- The Z1 Integrated Truss Segment (ITS), a major element of the STS-92 mission scheduled for launch aboard Space Shuttle Atlantis in January 1999, is lowered into its workstand for p... More

Participants in the ribbon cutting for KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF) pose in front of a Space Shuttle Main Engine on display for the ceremony. From left, they are Ed Adamek, vice president and associate program manager for Ground Operations of United Space Alliance; John Plowden, vice president of Rocketdyne; Donald R. McMonagle, manager of Launch Integration; U.S. Congressman Dave Weldon; KSC Center Director Roy D. Bridges Jr.; Wade Ivey of Ivey Construction, Inc.; and Robert B. Sieck, director of Shuttle Processing. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998 KSC-98pc784

Participants in the ribbon cutting for KSC's new 34,600-square-foot Sp...

Participants in the ribbon cutting for KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF) pose in front of a Space Shuttle Main Engine on display for the ceremony. From left, th... More

Previous

of 10

Next