visibility Similar

code Related

X-36 on Ramp Viewed from Above. Public domain image of NASA aircraft.



This look-down view of the X-36 Tailless Fighter Agility Research Aircraft on the ramp at NASA's Dryden Flight Research Center, Edwards, California, clearly shows the unusual wing and canard design of the remotely-piloted aircraft. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine provided close to 700 pounds of thrust. A typical research flight lasted 35 to 45 minutes from takeoff to touchdown. A total of 31 successful research flights were flown from May 17, 1997, to November 12, 1997, amassing 15 hours and 38 minutes of flight time. The aircraft reached an altitude of 20,200 feet and a maximum angle of attack of 40 degrees. In a follow-on effort, the Air Force Research Laboratory (AFRL), Wright-Patterson Air Force Base, Ohio, contracted with Boeing to fly AFRL's Reconfigurable Control for Tailless Fighter Aircraft (RESTORE) software as a demonstration of the adaptability of the neural-net algorithm to compensate for in-flight damage or malfunction of effectors, such as flaps, ailerons and rudders. Two RESTORE research flights were flown in December 1998, proving the viability of the software approach. The X-36 aircraft flown at the Dryden Flight Research Center in 1997 was a 28-percent scale representation of a theoretical advanced fighter aircraft. The Boeing Phantom Works (formerly McDonnell Douglas) in St. Louis, Missouri, built two of the vehicles in a cooperative agreement with the Ames Research Center, Moffett Field, California.

NASA Identifier: NIX-EC97-44165-151



nasa x 36 on ramp viewed from above dvids maps boeing aircrafts public domain aircraft photos experimental aircraft dryden flight research center california nasa history collection




Armstrong Flight Research Center ,  34.95855, -117.89067




Copyright info

Public Domain Dedication. Public Use Notice of Limitations:

label_outline Explore Maps, Boeing Aircrafts, Dryden Flight Research Center


STS-130 - EOM - Public domain NASA photogrpaph

An air-to-air right side view of an EA-3B Skywarrior aircraft

An air-to-air right side view of an E-4B Advanced Airborne Command Post (AABNCP) aircraft

AN air-to-air left side view of a KC-10 Extender aircraft


Marine Corps CWO 3 Spencer Morris, a counter intelligence

VANDENBERG AFB, Calif. – The Orbital Sciences Pegasus XL rocket with its NuSTAR spacecraft after attachment to the L-1011 carrier aircraft known as "Stargazer." The Pegasus will launch NuSTAR into space where the high-energy x-ray telescope will conduct a census for black holes, map radioactive material in young supernovae remnants, and study the origins of cosmic rays and the extreme physics around collapsed stars. Photo credit: NASA/Randy Beaudoin, VAFB KSC-2012-3167

Air to air view right side view of a 9th Strategic Reconnaissance Wing's SR-71 Blackbird reconnaissance aircraft, flying over scattered clouds, on a mission out of Beale Air Force Base, California. Exact Date Shot Unknown

STS113-312-031 - STS-113 - Distant ISS view taken following STS-113 undocking

ST. LOUIS (Nov. 19, 2019) Naval Aircrewman (Operator)

During Terminal Countdown Demonstration Test (TCDT) activities, STS-99 Mission Specialist Janet Lynn Kavandi (Ph.D.) is ready to practice driving the M-113, an armored personnel carrier. Part of Terminal Countdown Demonstration Test (TCDT) activities, the M-113 could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. TCDT provides the crew with simulated countdown exercises, emergency egress training, and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST KSC-00pp0018


nasa x 36 on ramp viewed from above dvids maps boeing aircrafts public domain aircraft photos experimental aircraft dryden flight research center california nasa history collection