visibility Similar

KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility at NASA's Kennedy Space Center, STS-115 crew members inspect equipment in Atlantis's payload bay. From left are Mission Specialists Joseph Tanner and Heidemarie Stefanyshyn-Piper. The crew is at KSC for Crew Equipment Interface Test activities, which involves equipment familiarization, a routine part of astronaut training and launch preparations. The STS-115 mission will deliver the second port truss segment, the P3/P4 truss, to the International Space Station. The crew will attach the P3 to the first port truss segment, the P1 truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Atlantis is scheduled for late August. Photo credit: NASA/Kim Shiflett KSC-06pd1206

Thermal Infrared Sensor (TIRS) INSTRUMENT

Boswell Bay White Alice Site, Radio Relay Building, Chugach National Forest, Cordova, Valdez-Cordova Census Area, AK

KENNEDY SPACE CENTER, Fla. -- From a vantage point below it, members of the STS-110 crew check out Integrated Truss Structure (ITS) S0, which is in the Operations and Checkout Building. From left are Mission Specialists Rex J. Walheim, Jerry L. Ross and Lee M. Morin. They and other crew members are taking part in a Crew Equipment Interface Test at KSC. Not shown are Commander Michael J. Bloomfield, Pilot Stephen N. Frick, and Mission Specialists Steven L. Smith and Ellen Ochoa. The ITS S0 is part of the payload on the mission. It is the center segment they will be installing on the International Space Station, part of the 300-foot (91-meter) truss attached to the U.S. Lab. By assembly completion, four more truss segments will attach to either side of the S0 truss. STS-110 is currently scheduled to launch in February 2002 KSC-01pp1567

U.S. Army Chief of Staff Gen. Mark A. Milley visits

HIGH BAY AREA, NASA Technology Images

US COAST GUARD AMT Competition U.S. Coast Guard photograph

TEST RIGS, NASA Technology Images

LDEF (Postflight), AO187-01 : The Chemistry of Micrometeoroids, Tray A03

code Related

KENNEDY SPACE CENTER, FLA. -- Inside the payload bay of orbiter Endeavour in the Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Jerry L. Ross (left) and James H. Newman (right foreground) get a close look at the Orbiter Docking System. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. While on orbit during STS-88, Unity will be latched atop the Orbiter Docking System in the forward section of Endeavour's payload bay for the mating of the two modules. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability KSC-98pc1218

KENNEDY SPACE CENTER, FLA. -- As the bucket operator (left) lowers them into the open payload bay of the orbiter Endeavour, STS-88 Mission Specialists Jerry L. Ross (second from left) and James H. Newman (second from right) do a sharp-edge inspection. At their right is Wayne Wedlake, with United Space Alliance at Johnson Space Center. Below them is the Orbiter Docking System, the remote manipulator system arm and a tunnel into the payload bay. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability KSC-98pc1222

KENNEDY SPACE CENTER, FLA. -- Lowered on a movable work platform or bucket inside the payload bay of orbiter Endeavour, STS-88 Mission Specialists Jerry L. Ross (far right) and James H. Newman (second from right) get a close look at the Orbiter Docking System. At left is the bucket operator and Wayne Wedlake, with United Space Alliance at Johnson Space Center. The STS-88 crew members are in Orbiter Processing Facility Bay 1 to participate in a Crew Equipment Interface Test (CEIT) to familiarize themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. While on orbit during STS-88, Unity will be latched atop the Orbiter Docking System in the forward section of Endeavour's payload bay for the mating of the two modules. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability KSC-98pc1219

KENNEDY SPACE CENTER, FLA. -- Inside the payload bay of Space Shuttle orbiter Endeavour in Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Jerry L. Ross (crouching at left) and James H. Newman (far right) get a close look at equipment. Looking on is Wayne Wedlake (far left), with United Space Alliance at Johnson Space Center, and a KSC worker (behind Newman) who is operating the movable work platform or bucket. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability KSC-98pc1217

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility Bay 1, STS-88 Mission Specialists Sergei Krikalev (left), a cosmonaut from Russia; and Jerry L. Ross examine equipment that will be aboard Space Shuttle Endeavour. Launch of mission STS-88 is targeted for Dec. 3, 1998. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Other crew members are Commander Robert D. Cabana, Pilot Frederick W. "Rick" Sturckow and Mission Specialists Nancy J. Currie and James H. Newman. STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability KSC-98pc1214

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility Bay 1, STS-88 Mission Specialists (left to right) Jerry L. Ross; Sergei Krikalev, a cosmonaut from Russia; and James H. Newman examine equipment that will be on the Space Shuttle Endeavour during their upcoming flight. Launch of Mission STS-88 is targeted for Dec. 3, 1998. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Other crew members are Commander Robert D. Cabana, Pilot Frederick W. "Rick" Sturckow and Mission Specialist Nancy J. Currie. STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability KSC-98pc1213

KENNEDY SPACE CENTER, FLA. -- Clad in their blue flight suits, STS-88 Mission Specialists (from left) Sergei Krikalev, a cosmonaut from Russia; Jerry L. Ross; and James H. Newman examine equipment from a toolbox that will be on the Space Shuttle Endeavour during their flight. Talking to Ross is Wayne Wedlake of United Space Alliance at Johnson Space Center, while Henry Thacker (facing camera), of Flight Crew Systems at KSC, looks on. Launch of mission STS-88 is targeted for Dec. 3, 1998. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT) in the Orbiter Processing Facility Bay 1 to familiarize themselves with the orbiter's midbody and crew compartments. STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability KSC-98pc1215

KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-88 Mission Specialists Sergei Krikalev (left), a Russian cosmonaut; James H. Newman (center); and Jerry L. Ross conduct a sharp-edge inspection of the Unity connecting module, which is the primary payload on their upcoming mission. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability KSC-98pc1223

KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility Bay 1, STS-88 Commander Robert D. Cabana watches from inside Space Shuttle orbiter Endeavour as worker Tracey Hackett cleans the outside of a window. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability KSC-98pc1227

KENNEDY SPACE CENTER, FLA. -- Inside the payload bay of Space Shuttle orbiter Endeavour, workers and STS-88 crew members on a movable work platform or bucket move closer to the rear of the orbiter's crew compartment. While Endeavour is being prepared for flight inside Orbiter Processing Facility Bay 1, the STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT) to familiarize themselves with the orbiter's midbody and crew compartments. A KSC worker (left) maneuvers the platform to give Mission Specialists Jerry L. Ross and James H. Newman (right) a closer look. Looking on is Wayne Wedlake of United Space Alliance at Johnson Space Center. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability KSC-98pc1216

description

Summary

KENNEDY SPACE CENTER, FLA. -- Inside the payload bay of Space Shuttle orbiter Endeavour, workers and STS-88 crew members on a movable work platform or bucket move closer to the rear of the orbiter's crew compartment. While Endeavour is being prepared for flight inside Orbiter Processing Facility Bay 1, the STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT) to familiarize themselves with the orbiter's midbody and crew compartments. A KSC worker (left) maneuvers the platform to give Mission Specialists Jerry L. Ross and James H. Newman (right) a closer look. Looking on is Wayne Wedlake of United Space Alliance at Johnson Space Center. Targeted for liftoff on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for assembly of the International Space Station (ISS). The primary payload is the Unity connecting module which will be mated to the Russian-built Zarya control module, expected to be already on orbit after a November launch from Russia. After the mating, Ross and Newman are scheduled to perform three spacewalks to connect power, data and utility lines and install exterior equipment. The first major U.S.-built component of ISS, Unity will serve as a connecting passageway to living and working areas of the space station. Unity has two attached pressurized mating adapters (PMAs) and one stowage rack installed inside. PMA-1 provides the permanent connection point between Unity and Zarya; PMA-2 will serve as a Space Shuttle docking port. Zarya is a self-supporting active vehicle, providing propulsive control capability and power during the early assembly stages. It also has fuel storage capability

The Space Shuttle program was the United States government's manned launch vehicle program from 1981 to 2011, administered by NASA and officially beginning in 1972. The Space Shuttle system—composed of an orbiter launched with two reusable solid rocket boosters and a disposable external fuel tank— carried up to eight astronauts and up to 50,000 lb (23,000 kg) of payload into low Earth orbit (LEO). When its mission was complete, the orbiter would re-enter the Earth's atmosphere and lands as a glider. Although the concept had been explored since the late 1960s, the program formally commenced in 1972 and was the focus of NASA's manned operations after the final Apollo and Skylab flights in the mid-1970s. It started with the launch of the first shuttle Columbia on April 12, 1981, on STS-1. and finished with its last mission, STS-135 flown by Atlantis, in July 2011.

Nothing Found.

label_outline

Tags

kennedy space center payload bay payload bay orbiter endeavour space shuttle orbiter endeavour workers sts crew members platform work platform bucket move bucket move crew compartment facility bay equipment interface test crew equipment interface test ceit midbody ksc worker maneuvers specialists jerry mission specialists jerry l ross newman wayne wedlake wayne wedlake space alliance johnson johnson space center liftoff first space shuttle international space station iss unity module zarya control russian built zarya control module orbit russia spacewalks three spacewalks power utility lines utility lines component passageway areas adapters pmas stowage rack one stowage rack pma connection point connection point space shuttle port capability control capability stages fuel storage fuel storage capability ksc james sts 88 crew members space station crew compartments nasa
date_range

Date

03/10/1998
collections

in collections

Space Shuttle Program

place

Location

create

Source

NASA
link

Link

https://images.nasa.gov/
copyright

Copyright info

Public Domain Dedication (CC0)

label_outline Explore Fuel Storage Capability Ksc, One Stowage Rack, Ksc Worker

150605-N-FQ994-218 MEDITERRANEAN SEA (June 5, 2015)

Aerial port quarter view of the nuclear-powered aircraft carrier USS DWIGHT D. EISENHOWER (CVN-69) tied up at one of the service piers at the Newport News Shipbuilding and Drydock Corporation Shipyard. The IKE is in the late stages of an extensive overhaul and modification period and will return to the fleet in December

CAPE CANAVERAL, Fla. - In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians, lying on a work platform, remove window #8 from the top of the crew module of space shuttle Atlantis. Inspection and maintenance of the crew module windows is standard procedure between shuttle missions. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14. Photo credit: NASA/Glenn Benson KSC-2010-1082

KENNEDY SPACE CENTER, FLA. -- Boeing technicians move a piece of hardware into position on Node 1 of the International Space Station (ISS) in KSC's Space Station Processing Facility in preparation for mating with Pressurized Mating Adapter (PMA)-2. The node is the first element of the ISS to be manufactured in the United States and is currently scheduled to lift off aboard the Space Shuttle Endeavour on STS-88 later this year, along with PMAs 1 and 2. The 18-foot-in-diameter, 22-foot-long aluminum module was manufactured by the Boeing Co. at Marshall Space Flight Center. Once in space, Node 1 will function as a connecting passageway to the living and working areas of the ISS. It has six hatches that will serve as docking ports to the U.S. laboratory module, U.S. habitation module, an airlock and other space station elements KSC-98pc539

Sailors wearing an oxygen breathing apparatus (OBAs) file through a passageway while en route to the hangar deck firefighting drill aboard the aircraft carrier USS CONSTELLATION (CV 64) during PACEX '89

Detroit, Michigan. New method of making x-ray photographs size 4x5 inches instead of larger. Used at the Herman Kiefer Hospital for Communicable Diseases to show various stages of tuberculosis. The x-ray plate is contained in the apparatus in front of the girl. The apparatus in the foreground contains an x-ray tube

STS-98 Mission Specialist Marsha Ivins (left) speaks to astronaut Pam Melroy, who piloted the T-38 jet that brought Ivins to KSC. Ivins and other crew members Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones have returned to KSC to prepare for their launch to the International Space Station. The seventh construction flight to the Space Station, STS-98 will carry the U.S. Laboratory Destiny, a key module for space experiments. The 11-day mission includes three spacewalks to complete outside assembly and connection of electrical and plumbing lines between the laboratory, Station and a relocated Shuttle docking port. STS-98 is Ivins’ fifth space flight. Launch is targeted for Feb. 7 at 6:11 p.m. EST KSC01pp0226

ROTARY ENGINE HOUSING WITH INSTRUMENT PROBE ADAPTERS INSTALLED

STS072-305-031 - STS-072 - Activity during first EVA of STS-72 mission

After leaving the Operations and Checkout Building, the STS-88 crew approach the Astrovan for their trip to Launch Pad 39A. In the back row are (left to right) Mission Specialist Sergei Konstantinovich Krikalev, a Russian cosmonaut, and Mission Specialists Jerry L. Ross and James H. Newman. In the front row (left to right) are Pilot Frederick W. "Rick" Sturckow, Mission Specialist Nancy J. Currie and Commander Robert D. Cabana. STS-88 is expected to launch at 3:56 a.m. EST with the six-member crew aboard Space Shuttle Endeavour on Dec. 3. Endeavour carries the Unity connecting module, which the crew will be mating with the Russian-built Zarya control module already in orbit. In addition to Unity, two small replacement electronics boxes are on board for possible repairs to Zarya batteries. The mission is expected to last 11 days, 19 hours and 49 minutes, with landing at 10:17 p.m. EST on Dec. 14 KSC-98pc1764

Severe Storm ^ Winter Storm - East Hartford, Conn. , November 3, 2011 -- Members of the Connecticut National Guard work with FEMA to provide drinking water and meals-ready-to-eat to residents recovering from the effects of an October severe storm that dumped snow in many parts of the state, downing trees and utility lines. FEMA is providing emergency protective measures including direct Federal assistance. Photo by Norman Lenburg/FEMA

Women in industry. Gas mask production. The finished gas mask face pieces in the foreground were just flaps of rubber without eye pieces, outlet valves, straps, tabs, and other accessories when they started on the long moving belt at the far end of the line. By the time they've reached this end, however, a hundred pairs of hands have worked on them, machining, clamping, riveting, testing, and inspecting each one until the completed masks are packaged in the final stages of production. All this activity takes place in a Midwest vacuum cleaner plant which has been converted to war work. Eureka Vacuum, Detroit, Michigan

Topics

kennedy space center payload bay payload bay orbiter endeavour space shuttle orbiter endeavour workers sts crew members platform work platform bucket move bucket move crew compartment facility bay equipment interface test crew equipment interface test ceit midbody ksc worker maneuvers specialists jerry mission specialists jerry l ross newman wayne wedlake wayne wedlake space alliance johnson johnson space center liftoff first space shuttle international space station iss unity module zarya control russian built zarya control module orbit russia spacewalks three spacewalks power utility lines utility lines component passageway areas adapters pmas stowage rack one stowage rack pma connection point connection point space shuttle port capability control capability stages fuel storage fuel storage capability ksc james sts 88 crew members space station crew compartments nasa